RESUMO
For tumors to progress efficiently, cancer cells must overcome barriers of oxidative stress. Although dietary antioxidant supplementation or activation of endogenous antioxidants by NRF2 reduces oxidative stress and promotes early lung tumor progression, little is known about its effect on lung cancer metastasis. Here, we show that long-term supplementation with the antioxidants N-acetylcysteine and vitamin E promotes KRAS-driven lung cancer metastasis. The antioxidants stimulate metastasis by reducing levels of free heme and stabilizing the transcription factor BACH1. BACH1 activates transcription of Hexokinase 2 and Gapdh and increases glucose uptake, glycolysis rates, and lactate secretion, thereby stimulating glycolysis-dependent metastasis of mouse and human lung cancer cells. Targeting BACH1 normalized glycolysis and prevented antioxidant-induced metastasis, while increasing endogenous BACH1 expression stimulated glycolysis and promoted metastasis, also in the absence of antioxidants. We conclude that BACH1 stimulates glycolysis-dependent lung cancer metastasis and that BACH1 is activated under conditions of reduced oxidative stress.
Assuntos
Antioxidantes/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Animais , Antioxidantes/administração & dosagem , Fatores de Transcrição de Zíper de Leucina Básica/genética , Movimento Celular/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Heme/metabolismo , Hexoquinase/antagonistas & inibidores , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Rac1 is a ubiquitously expressed Rho GTPase and an important regulator of the actin cytoskeleton. Its splice variant Rac1b exhibits a 19-amino acid (aa) in-frame insertion and is predominantly active. Both proteins were described in tumorigenesis or metastasis. We investigated the contribution of Rac1 and Rac1b to tumor progression of human non-small-cell lung adenocarcinoma (NSCLA). Rac1 protein was present in 8/8 NSCLA cell lines analyzed, whereas Rac1b was expressed in only 6/8. In wound-healing assays, enhanced green fluorescence protein (EGFP)-Rac1 slightly decreased cell migration, whereas proliferation was increased in both, Rac1- and Rac1b-expressing cells. In the in vivo chorioallantoic invasion model, EGFP-Rac1-expressing cells formed more invasive tumors compared to EGFP-Rac1b. This increased invasiveness correlated with enhanced phosphorylation of p38α, AKT and glycogen synthase kinase 3ß (GSK3ß), and activation of serum response- and Smad-dependent gene promoters by Rac1. In contrast, Rac1b solely activated the mitogen-activated protein kinase (MAPK) JNK2, together with TCF/LEF1- and nuclear factor kappa B (NFκB)-responsive gene reporters. Rac1b, as Rac1, phosphorylated p38α, AKT and GSK3ß. Knockdown of the splicing factor epithelial splicing regulatory protein 1 (ESRP1), which mediates out-splicing of exon 3b from Rac1 pre-messenger RNA, resulted in increased Rac1b messenger RNA (mRNA) and suppression of the epithelial-mesenchymal transition (EMT)-associated transcription factor ZEB1. Our data demonstrate different signaling and functional activities of Rac1 and Rac1b and an important role for Rac1 in lung cancer metastasis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/análise , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-ß (TGF-ß) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-ß signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-ß signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-ß signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Invasividade Neoplásica/patologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genéticaRESUMO
RATIONALE: Metabolic alterations contribute to cancer development and progression. However, the molecular mechanisms relating metabolism to cancer metastasis remain largely unknown. OBJECTIVES: To identify a key metabolic enzyme that is aberrantly overexpressed in invasive lung cancer cells and to investigate its functional role and prognostic value in lung cancer. METHODS: The differential expression of metabolic enzymes in noninvasive CL1-0 cells and invasive CL1-5 cells was analyzed by a gene expression microarray. The expression of target genes in clinical specimens from patients with lung cancer was examined by immunohistochemistry. Pharmacologic and gene knockdown/overexpression approaches were used to investigate the function of the target gene during invasion and metastasis in vitro and in vivo. The association between the target gene expression and clinicopathologic parameters was further analyzed. Bioinformatic analyses were used to discover the signaling pathways involved in target gene-regulated invasion and migration. MEASUREMENTS AND MAIN RESULTS: Squalene synthase (SQS) was up-regulated in CL1-5 cells and in the tumor regions of the lung cancer specimens. Loss of function or knockdown of SQS significantly inhibited invasion/migration and metastasis in cell and animal models and vice versa. High expression of SQS was significantly associated with poor prognosis among patients with lung cancer. Mechanistically, SQS contributed to a lipid-raft-localized enrichment of tumor necrosis factor receptor 1 in a cholesterol-dependent manner, which resulted in the enhancement of nuclear factor-κB activation leading to matrix metallopeptidase 1 up-regulation. CONCLUSIONS: Up-regulation of SQS promotes metastasis of lung cancer by enhancing tumor necrosis factor-α receptor 1 and nuclear factor-κB activation and matrix metallopeptidase 1 expression. Targeting SQS may have considerable potential as a novel therapeutic strategy to treat metastatic lung cancer.
Assuntos
Farnesil-Difosfato Farnesiltransferase/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/secundário , Microdomínios da Membrana/metabolismo , Invasividade Neoplásica/fisiopatologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol/biossíntese , Modelos Animais de Doenças , Farnesil-Difosfato Farnesiltransferase/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/metabolismo , Prognóstico , Regulação para CimaRESUMO
OBJECTIVE: This study aimed to investigate the reasons behind the lower survival rates in male lung cancer patients than in female lung cancer patients. METHODS: Through various techniques, such as Argonaute immunoprecipitation, luciferase assays, and ChIP, this study confirmed the positive effects of androgen receptor (AR) on lung cancer cell invasion across different in vitro cell lines and in vivo mouse models. RESULTS: The findings suggest that AR enhanced the invasion of lung cancer cells by modifying EPHB2 signals at the protein expression level, which in turn required changes in miRNA-23a-3p. Restoring miRNA-23a-3p could counteract the intensified invasion of lung cancer cells mediated by AR. CONCLUSION: This study revealed that AR may facilitate the lung cancer matastasis by modulating miRNA-23a-3p/EPHB2 signaling and that targeting this signaling pathway could provide new approaches to inhibit lung cancer metastasis.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Receptor EphB2 , Receptores Androgênicos , Transdução de Sinais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Camundongos , Masculino , Transdução de Sinais/genética , Receptor EphB2/genética , Receptor EphB2/metabolismo , Linhagem Celular Tumoral , Feminino , Metástase Neoplásica , Movimento Celular/genética , Invasividade Neoplásica/genéticaRESUMO
Objective: Human endogenous retrovirus-H long terminal repeat associating 2 (HHLA2) is a new immune checkpoint in the B7 family, and the value of HHLA2 in small cell lung cancer (SCLC) is unknown. Methods: We retrospectively detected HHLA2 expression by immunohistochemistry in SCLC patients. Moreover, plasma biomarkers of SCLC were detected retrospectively. Results: Seventy-four percent of SCLC patients exhibited HHLA2 expression. HHLA2 staining was localised within the nucleus of SCLC cells, while no staining was detected in normal lung tissue specimens. The correlation between HHLA2 expression and clinical factors was also analysed. Limited stage (LS) SCLC was more common than extensive stage (ES) SCLC among patients with HHLA2 staining. SCLC patients without metastasis had higher HHLA2 expression than SCLC patients with metastasis. HHLA2 expression was more frequently detected in the group with a tumour size greater than 5â cm than in the group with a tumour size less than 5â cm. The proportion of patients with HHLA2-positive staining was greater in the stage III and IV SCLC groups than in the stage I and II SCLC groups. A high proportion of SCLC patients with HHLA2-positive staining had a survival time <2 years. Neuron-specific enolase (NSE), CEA and Ki-67 levels were measured. The NSE level in the HHLA2-positive group was significantly greater than that in the HHLA2-negative group. The CEA and Ki-67 levels did not significantly differ between the HHLA2-positive and HHLA2-negative patients, nor were age, sex, smoking status, nodal metastasis status, Karnofsky Performance Scale (KPS) score, or Ki-67 expression score. HHLA2-positive SCLC patients had higher tumour stages and shorter 2-year survival times than HHLA2-negative patients did. Conclusion: The new immune molecule HHLA2 may be an ideal clinical biomarker for predicting SCLC progression and could serve as a new immunotherapy target in SCLC.
Assuntos
Retrovirus Endógenos , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Antígeno Ki-67 , Estudos Retrospectivos , Sequências Repetidas Terminais , ImunoglobulinasRESUMO
Background: Previous studies of lung cancer metastasis-related protein 1 (LCMR1) mainly focused on its relationship with cancer. However, the function of LCMR1 in normal tissues or cells is poorly understood. We aimed to investigate the effects of alveolar type II cell (AT2 cell)-specific LCMR1 deletion on lung structure and function in adult mice. Methods: Mice carrying the floxed LCMR1 allele with exons 2-4 flanked by loxP sites were constructed and then crossed with Sftpc-CreERT2 mice to obtain Sftpc-CreERT2 ; LCMR1 flox/flox for AT2 cell-specific LCMR1 deletion and LCMR1 flox/flox mice as littermate control. We observed the body weight change, histopathology, lung wet/dry weight ratio, pulmonary function, and survival of the mice, together with the protein concentration, inflammatory cells, and cytokine levels in bronchoalveolar lavage fluid. We also detected AT2 cell numbers and expression of pulmonary surfactant protein in the lung tissues. The apoptosis of AT2 cells was also assessed. Results: We found that AT2 cell-specific LCMR1 deletion caused rapid weight loss and increased mortality in mice. Histopathological analysis revealed damaged lung structure, including inflammatory cell infiltration, alveolar hemorrhage, and edema. The lung wet/dry weight ratio was higher and bronchoalveolar lavage fluid (BALF) analysis revealed elevated protein concentration, inflammatory cell counts, and cytokine levels. Pulmonary function measurement showed increased airway resistance, decreased lung compacity, and compliance. We also found massive AT2 cell loss and altered expression of pulmonary surfactant protein. Deletion of LCMR1 promoted apoptosis in AT2 cells. Conclusions: We successfully generated an AT2 cell-specific LCMR1 conditional knockout mouse model and further revealed the crucial role of LCMR1 in maintaining AT2 cell homeostasis.
RESUMO
BACKGROUND: Lung cancer is the most common and deadliest cancer worldwide, and approximately 90% of all lung cancer deaths are caused by tumor metastasis. Tumor-derived exosomes could potentially promote tumor metastasis through the delivery of metastasis-related molecules. However, the function and underlying mechanism of exosomal long noncoding RNA (lncRNA) in lung cancer metastasis remain largely unclear. METHODS: Cell exosomes were purified from conditioned media by differential ultracentrifugation and observed using transmission electron microscopy, and the size distributions were determined by nanoparticle tracking analysis. Exosomal lncRNA sequencing (lncRNA-seq) was used to identify long noncoding RNAs. Cell migration and invasion were determined by wound-healing assays, two-chamber transwell invasion assays and cell mobility tracking. Mice orthotopically and subcutaneously xenografted with human cancer cells were used to evaluate tumor metastasis in vivo. Western blot, qRTâPCR, RNA-seq, and dual-luciferase reporter assays were performed to investigate the potential mechanism. The level of exosomal lncRNA in plasma was examined by qRTâPCR. MS2-tagged RNA affinity purification (MS2-TRAP) assays were performed to verify lncRNA-bound miRNAs. RESULTS: Exosomes derived from highly metastatic lung cancer cells promoted the migration and invasion of lung cancer cells with low metastatic potential. Using lncRNA-seq, we found that a novel lncRNA, lnc-MLETA1, was upregulated in highly metastatic cells and their secreted exosomes. Overexpression of lnc-MLETA1 augmented cell migration and invasion of lung cancer. Conversely, knockdown of lnc-MLETA1 attenuated the motility and metastasis of lung cancer cells. Interestingly, exosome-transmitted lnc-MLETA1 promoted cell motility and metastasis of lung cancer. Reciprocally, targeting lnc-MLETA1 with an LNA suppressed exosome-induced lung cancer cell motility. Mechanistically, lnc-MLETA1 regulated the expression of EGFR and IGF1R by sponging miR-186-5p and miR-497-5p to facilitate cell motility. The clinical datasets revealed that lnc-MLETA1 is upregulated in tumor tissues and predicts survival in lung cancer patients. Importantly, the levels of exosomal lnc-MLETA1 in plasma were positively correlated with metastasis in lung cancer patients. CONCLUSIONS: This study identifies lnc-MLETA1 as a critical exosomal lncRNA that mediates crosstalk in lung cancer cells to promote cancer metastasis and may serve as a prognostic biomarker and potential therapeutic target for lung cancer diagnosis and treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimento Celular/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor IGF Tipo 1/genéticaRESUMO
Due to the lack of early detection before metastasis and failure of current therapy to cure the disease, lung cancer contributes to the highest cancer-related mortality worldwide. Tenascin C (TNC) (+) exosomes promote metastasis, amphiregulin (AREG) (+) exosomes are associated with chemotherapy resistance, and programmed cell death ligand-1 (PDL-1) (+) exosomes are associated with immunotherapy resistance, and they are emerging as biomarkers in clinics. However, due to heterogeneity, rapid isolation and multiplex detection of these exosomes are challenging. Herein, we report the design of an antibody-conjugated multi-color (orange, yellow, and green)-emissive carbon dot (CD)-attached cobalt spinel ferrite (CoFe2O4)-based magneto-luminescent nanoarchitecture for targeted capturing and identification of TNC (+), AREG (+), and PDL-1(+) exosomes selectively and simultaneously from whole blood samples. More importantly, to capture and identify the targeted AREG (+) exosome from an infected whole-blood sample, an anti-AREG antibody-attached green (520 nm)-emissive CD-conjugated CoFe2O4 nanoparticle-based magnetic-green luminescence nanoarchitecture was developed. Similarly, an anti-PDL-1 antibody-attached orange (600 nm)-emissive CDs-based magnetic-orange luminescence nanoarchitecture has been produced to capture and identify the PDL-1 (+) exosome. Furthermore, an anti-TNC antibody-attached yellow (560 nm)-emissive CD-based magnetic-orange luminescent nanoarchitecture has been designed to capture and identify the TNC (+) exosome. Notably, our finding reveals that 100% TNC (+) exosomes can be captured and imaged selectively from an infected blood sample using an anti-TNC antibody-conjugated nanoarchitecture. In addition, 100% AREG (+) exosomes can be captured and imaged selectively using an anti-AREG antibody-conjugated nanoarchitecture. Moreover, 100% PDL-1 (+) exosomes can be captured and imaged selectively using an anti-PDL-1 antibody-conjugated nanoarchitecture. Furthermore, we have demonstrated that a multi-color-emissive nanoarchitecture can be used for capturing and imaging all three exosomes simultaneously.
Assuntos
Exossomos , Neoplasias Pulmonares , Nanopartículas , Humanos , Exossomos/metabolismo , Luminescência , Neoplasias Pulmonares/metabolismo , Biomarcadores/metabolismoRESUMO
BACKGROUND/AIM: Metastasis negatively affects the survival of lung cancer patients, however, relatively few compounds have potential in metastasis suppression. This study investigated the molecular targets of N,N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD) for metastatic inhibition. MATERIALS AND METHODS: Proteins were analyzed by proteomic and bioinformatic analyses. Protein-protein interaction (PPI) networks were created with the Search Tool for the Retrieval of Interacting Genes. The Kyoto Encyclopedia of Genes and Genomes database and hub genes were used to determine dominant pathways. Immunofluorescence and western blot analyses validated the proteomic results and investigated signaling pathways in NCI-H23 lung cancer cells. RESULTS: A total of 1,751 proteins were common to the control, EMD and N,N-bis(5-methoxy-2-hydroxybenzyl) methylamine (MeMD) groups; 1,980 different proteins were categorized using metastatic capacity category and analyzed for unique proteins affected by EMD. Fifteen proteins were associated with cell adhesion and six with cell migration. Nectin cell adhesion molecule 2 (NECTIN2) was expressed in the control and MeMD-treated groups but not the EMD-treated group, suggesting NECTIN2 as an EMD target. PPI network showed association of NECTIN2 with proteins regulating cancer metastasis. Kyoto Encyclopedia of Genes and Genomes pathways revealed that NECTIN2 is an upstream target of cytoskeletal regulation via SRC signaling. Western blot and immunofluorescence analyses confirmed that EMD suppressed NECTIN2, and its downstream targets, including p-SRC (Y146 and Y527) and the epithelial-to-mesenchymal transition markers tight junction protein 1, vimentin, ß-catenin, snail family transcriptional repressor 1 (SNAI1), and SNAI2, while increasing E-cadherin. CONCLUSION: EMD suppressed NECTIN2-induced activation of EMT signaling. These data support the development of EMD to prevent metastasis of lung cancer.
Assuntos
Neoplasias Pulmonares , Nectinas , Humanos , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Metilaminas/farmacologia , Nectinas/efeitos dos fármacos , Nectinas/metabolismo , ProteômicaRESUMO
Long non-coding RNAs (lncRNAs) have been proven to play critical roles in epithelial-mesenchymal transition (EMT) and metastasis of lung cancer. However, the biological functions and related mechanisms of lncRNAs are unclear. In addition, the EMT-based prognosis prediction in lung cancer still lacks investigation. Here, we established the methodology of identifying critical metastasis-related lncRNAs using comprehensive datasets of cancer transcriptome, genome and epigenome, and also provided tools for prognosis prediction in lung cancer. Initially, important mesenchymal marker genes were identified to compose the tumor mesenchymal score, which predicted patient prognosis in lung cancer, especially lung adenocarcinoma (LUAD). The score was also correlated with several crucial biological and physiological processes, such as tumor immune and hypoxia. Based on the score, lung cancer patients was classified into epithelial and mesenchymal subtypes, and lncRNAs which exhibited expressional dysregulation, promotor methylation alteration and copy number variation between the two subtypes in LUAD were identified and underwent further prognostic analyses. Finally, we identified 14 lncRNAs as EMT-related and significant biomarkers in prognosis prediction of LUAD. As validation, lncRNA RBPMS-AS1 was proven to be co-expressed with epithelial biomarkers, suppressive for A549 cell migration, invasion and EMT, and also significantly associated with better outcomes of LUAD patients, suggesting the potential of RBPMS-AS1 to serve as a lncRNA epithelial biomarker in metastasis of LUAD. Based on the identified lncRNAs, an EMT-linked lncRNA prognostic signature was further established. Taken together, our study provides robust predictive tools, potential lncRNA targets and feasible screening strategies for future study of lung cancer metastasis.
Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica/genética , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/patologia , Células A549 , Processos NeoplásicosRESUMO
Lung cancer (LC) is the leading cause of cancer-related mortality. However, the molecular mechanisms associated with the development of metastasis are poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models KrasG12D/+ ; Trp53R172H/+ ; Ad-Cre (KPA) and KrasG12D/+ ; Ad-Cre (KA). Survival analysis showed significantly (P = 0.0049) shorter survival in KPA tumor-bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of N-acetylgalactosaminide alpha-2, 6-sialyltransferase 1 (St6galnac-I) in KPA compared to KA tumors. ST6GalNAc-I is an O-glycosyltransferase, which catalyzes the addition of sialic acid to the initiating GalNAc residues forming sialyl Tn (STn) on glycoproteins, such as mucins. Ectopic expression of species-specific p53 mutants in the syngeneic mouse and human LC cells led to increased cell migration and high expression of ST6GalNAc-I, STn, and MUC5AC. Immunoprecipitation of MUC5AC in the ectopically expressing p53R175H cells exhibited higher affinity toward STn. In addition, ST6GalNAc-I knockout (KO) cells also showed decreased migration, possibly due to reduced glycosylation of MUC5AC as observed by low STn on the glycoprotein. Interestingly, ST6GalNAc-I KO cells injected mice developed less liver metastasis (P = 0.01) compared to controls, while colocalization of MUC5AC and STn was observed in the liver metastatic tissues of control mice. Collectively, our findings support the hypothesis that mutant p53R175H mediates ST6GalNAc-I expression, leading to the sialyation of MUC5AC, and thus contribute to LC liver metastasis.
Assuntos
Neoplasias Hepáticas , Neoplasias Pulmonares , Animais , Glicosilação , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mucina-5AC/metabolismo , Ácido N-Acetilneuramínico , Sialiltransferases/genética , Sialiltransferases/metabolismoRESUMO
It is a significant challenge in lung cancer chemophotothermal (CPT) therapy to develop multifunctional theranostic nanoagent (MTN) for precise targeting and successful tumor treatments, especially for lung metastasis. To overcome this problem, we effectively design and construct multifunctional black phosphorus (BP) nanoagents, BPs/G-Rg3@PLGA. BPs quantum dots (BPsQDs) are co-loaded onto poly(lactic-co-glycolic acid) (PLGA) with subsequent conjugations of a cancer therapeutic compound, ginsenoside Rg3 (G-Rg3), in this composite nanoagent. The in vivo delivery findings suggest that BPs/G-Rg3@PLGA has an excellent affinity for primary tumors and metastatic lung tumors. Furthermore, when paired with near-light irradiation, BPs/G-Rg3@PLGA shows superior controllable CPT therapy synergetic therapeutics, significantly increasing photothermal tumor ablation effectiveness. Mechanistically, heating causes rapid G-Rg3 release from the non-complex, and thermal therapy induces apoptosis, culminating in the reduction of lung cancer metastasis. Additionally, in vivo and in vitro findings support the biocompatibility of BPs/G-Rg3@PLGA. This thesis identifies a versatile BPs-based MTN for lung cancer metastasis control.
Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ginsenosídeos/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Neoplasias Pulmonares/patologia , Fósforo/química , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Química Farmacêutica , Terapia Combinada , Liberação Controlada de Fármacos , Feminino , Ginsenosídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de SuperfícieRESUMO
PURPOSE: To evaluate the cytopathological results, surgical complications, and patient outcomes after transretinal biopsy (TRB) for diagnosis of retinal/choroidal tumors METHODS: Records of 40 cases who underwent TRB via 23-gauge (23 G) pars plana vitrectomy between March 2011 and March 2020 were reviewed. STUDY DESIGN: Retrospective. RESULTS: Twenty-six (65.0%) cases were women and 14 (35.0%) were men. The mean age at diagnosis was 57.2 (range: 18-83) years. The mean tumor base diameter was 12.0×9.8 mm and the mean tumor thickness was 4.9 mm. According to cytopathological examination, 29 (72.5%) cases had choroidal melanoma, 2 (5.0%) had non-small cell lung cancer metastasis, 1 (2.5%) had adenoma of retinal pigment epithelium, 1 (2.5%) had small cell lung cancer metastasis, 1 (2.5%) had invasive breast cancer metastasis, 1 (2.5%) had retinal astrocytic hamartoma, and 1 (2.5%) had pseudoneoplastic gliosis. Cytopathological examination of 4 (10.0%) cases revealed findings consistent with macular and extramacular degeneration. Postoperative complications were mild vitreous hemorrhage in 16 (40.0%) cases, gradually worsening cataract in 4 (11.8%), retinal detachment in 1 (2.5%), hyphema in 1 (2.5%), glaucoma in 1 (2.5%), and macular hole in 1 (2.5%). During the mean 11.1 (range: 1-55) months follow-up, 1 (3.4%) patient with choroidal melanoma developed liver metastasis. All patients were alive at the end of follow-up. CONCLUSIONS: TRB using 23 G pars plana vitrectomy can be used to make the cytopathologic diagnosis of retinal/choroidal tumors whenever the clinical diagnosis is not certain or in cases with known diagnosis to obtain information on cell type/cytogenetics. In our series, the most common diagnosis after cytopathologic examination was choroidal melanoma.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias da Coroide , Neoplasias Pulmonares , Biópsia , Neoplasias da Coroide/diagnóstico , Neoplasias da Coroide/cirurgia , Feminino , Humanos , Masculino , Complicações Pós-Operatórias , Estudos Retrospectivos , VitrectomiaRESUMO
Lung cancer is one of the most common human cancers both in incidence and mortality, with prognosis particularly poor in metastatic cases. Metastasis in lung cancer is a multifarious process driven by a complex regulatory landscape involving many mechanisms, genes, and proteins. Membrane proteins play a crucial role in the metastatic journey both inside tumor cells and the extra-cellular matrix and are a viable area of research focus with the potential to uncover biomarkers and drug targets. In this work we performed membrane proteome analysis of highly and poorly metastatic lung cells which integrated genomic, proteomic, and transcriptional data. A total of 1,762 membrane proteins were identified, and within this set, there were 163 proteins with significant changes between the two cell lines. We applied the Tied Diffusion through Interacting Events method to integrate the differentially expressed disease-related microRNAs and functionally dys-regulated membrane protein information to further explore the role of key membrane proteins and microRNAs in multi-omics context. Has-miR-137 was revealed as a key gene involved in the activity of membrane proteins by targeting MET and PXN, affecting membrane proteins through protein-protein interaction mechanism. Furthermore, we found that the membrane proteins CDH2, EGFR, ITGA3, ITGA5, ITGB1, and CALR may have significant effect on cancer prognosis and outcomes, which were further validated in vitro. Our study provides multi-omics-based network method of integrating microRNAs and membrane proteome information, and uncovers a differential molecular signatures of highly and poorly metastatic lung cancer cells; these molecules may serve as potential targets for giant-cell lung metastasis treatment and prognosis.
RESUMO
The rate of lung cancer has gradually increased in recent years, with an average annual increase of 15%. Afatinib (AFT) plays a key role in preventing non-small cell lung carcinoma (NSCLC) growth and spread. To increase the efficiency of drug loading and NSCLC cell tracking, near infrared-persistent luminescence nanomaterials (NIR PLNs), a silica shell-assisted synthetic route for mono-dispersal, are developed and used in the nanovehicle. After optimizing their physical and chemical properties, the NIR PLNs are able to absorb light energy and emit NIR luminescence for several hours. In this research, NIR PLNs are functionalized for drug-carrying capabilities. Effective accumulation of target drugs, such as AFT, using PLN nanomaterials can lead to unique anticancer therapeutic benefits (AFT-PLN). To minimize side effects and increase drug accumulation, nanomaterials with targeting abilities are used instead of simple drugs to inhibit the growth of tumor cells. Thus, the specific targeting aptamer, MAGE-A3 (MAp) is identified, and the PLN to increase its targeting ability (AFT-PLN@MAp) accordingly modified. The advancement of nanoscale techniques in the field of lung cancer is urgently needed; this research presents a plausible diagnostic strategy and a novel method for therapeutic administration.
RESUMO
BACKGROUND: Adenylate kinase 4 (AK4) has been identified as a biomarker of metastasis in lung cancer. However, the impacts of AK4 on metabolic genes and its translational value for drug repositioning remain unclear. METHODS: Ingenuity upstream analyses were used to identify potential transcription factors that regulate the AK4 metabolic gene signature. The expression of AK4 and its upstream regulators in lung cancer patients was examined via immunohistochemistry. Pharmacological and gene knockdown/overexpression approaches were used to investigate the interplay between AK4 and its upstream regulators during epithelial-to-mesenchymal transition (EMT). Drug candidates that reversed AK4-induced gene expression were identified by querying a connectivity map. Orthotopic xenograft mouse models were established to evaluate the therapeutic efficacy of drug candidates for metastatic lung cancer. RESULTS: We found that HIF-1α is activated in the AK4 metabolic gene signature. IHC analysis confirmed this positive correlation, and the combination of both predicts worse survival in lung cancer patients. Overexpression of AK4 exaggerates HIF-1α protein expression by increasing intracellular ROS levels and subsequently induces EMT under hypoxia. Attenuation of ROS production with N-acetylcysteine abolishes AK4-induced invasion potential under hypoxia. Pharmacogenomics analysis of the AK4 gene signature revealed that withaferin-A could suppress the AK4-HIF-1α signaling axis and serve as a potent anti-metastatic agent in lung cancer. CONCLUSIONS: Overexpression of AK4 promotes lung cancer metastasis by enhancing HIF-1α stability and EMT under hypoxia. Reversing the AK4 gene signature with withaferin-A may serve as a novel therapeutic strategy to treat metastatic lung cancer.
Assuntos
Adenocarcinoma de Pulmão/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenilato Quinase/antagonistas & inibidores , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/genética , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Hipóxia Tumoral , Vitanolídeos/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Accurate disease staging plays an important role in lung cancer's clinical management. However, due to the limitation of the CT scan, it is still an unmet medical need in practice. In the present study, we attempted to develop diagnostic models based on biomarkers and clinical parameters for assessing lung cancer metastasis. METHODS: This study consisted of 799 patients with pulmonary lesions from three regional centers in China. It included 274 benign lesions patients, 326 primary lung cancer patients without metastasis, and 199 advanced lung cancer patients with lymph node or organ metastasis. The patients were divided into nodules group and masses group according to tumor size. RESULTS: Four nomogram models based on patient characteristics and tumor biomarkers were developed and evaluated for patients with nodules and masses, respectively. In patients with pulmonary nodules, the AUC to identify metastatic lung cancer from unidentified nodules (including benign nodules and lung cancer, model 1) reached 0.859 (0.827-0.887, 95% CI). Model 2 was used to predict metastasis in patients with lung cancer with AUC of 0.838 (0.795-0.876, 95% CI). In patients with pulmonary masses, the AUC to identify metastatic lung cancer from unidentified masses (model 3) reached 0.773 (0.717-0.823, 95% CI). Model 4 was used to predict metastasis in patients with lung cancer and AUC reached 0.731 (0.771-0.793, 95% CI). Decision curve analysis corroborated good clinical applicability of the nomograms in predicting metastasis. CONCLUSION: All new models demonstrated promising discrimination, allowing for estimating the risk of lymph node or organ metastasis of lung cancer. Such integration of blood biomarker testing with CT imaging results will be an efficient and effective approach to benefit the accurate staging and treatment of lung cancer.
RESUMO
Design of dual mode or multimode contrast agents or nanoplatforms with antifouling properties is crucial for improved cancer diagnosis since the antifouling materials are able to escape the clearance of the reticuloendothelial system with improved pharmacokinetics. Herein, we present the creation of zwitterionic gadolinium(III) (Gd(III))-complexed dendrimer-entrapped gold nanoparticles (Au DEN) for enhanced dual mode computed tomography (CT)/magnetic resonance (MR) imaging of lung cancer metastasis. In the present work, poly(amidoamine) (PAMAM) dendrimers of generation 5 were partially decorated with carboxybetanie acrylamide (CBAA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and 1,3-propane sultone (1,3-PS), respectively at different degrees, then used to entrap Au NPs within their interiors, and finally acetylated to cover their remaining amine termini. Through protein resistance, macrophage cellular uptake, and pharmacokinetics assays, we show that zwitterionic Au DEN modified with 1,3-PS exhibit the best antifouling property with the longest half-decay time (37.07 h) when compared to the CBAA- and MPC-modified Au DEN. Furthermore, with the optimized zwitterion type, we then prepared zwitterionic Gd(III)-loaded Au DEN modified with arginine-glycine-aspartic acid peptide for targeted dual mode CT/MR imaging of a lung cancer metastasis model. We disclose that the designed multifunctional Au DEN having an Au core size of 2.7 nm and a surface potential of 7.6 ± 0.9 mV display a good X-ray attenuation property, relatively high r1 relaxivity (13.17 mM s-1), acceptable cytocompatibility, and targeting specificity to αvß3 integrin-expressing cancer cells and enable effective dual mode CT/MR imaging of a lung cancer metastasis model in vivo. The developed multifunctional zwitterion-functionalized Au DEN may be potentially adopted as an effective nanoprobe for enhanced dual-modal CT/MR imaging of other cancer types.
Assuntos
Meios de Contraste/química , Complexos de Coordenação/química , Dendrímeros/química , Gadolínio/química , Ouro/química , Neoplasias Pulmonares/diagnóstico , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/toxicidade , Compostos Heterocíclicos com 1 Anel/química , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Imageamento por Ressonância Magnética , Melanoma Experimental/patologia , Camundongos , Oligopeptídeos/química , Células RAW 264.7 , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Transplante HomólogoRESUMO
Background: Recent evidence indicates that UBE2C participates in carcinogenesis by regulating the cell cycle, apoptosis, metastasis, and transcriptional processes. Additionally, miR-548e-5p dysregulation plays a vital role in tumor progression. However, the molecular mechanism via which UBE2C is directly targeted by miR-548-5p, resulting in increase in cellular growth and invasiveness of cancer cells, and its interactions with the epithelial-mesenchymal transition (EMT) marker protein ZEB1/2 in non-small cell lung cancer (NSCLC) is not understood. Methods: Expression of UBE2C and miR-548e-5p was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein level of UBE2C and ZEB1/2 was analyzed using western blotting and immunofluorescence staining. Cellular proliferation was detected using the cell counting kit 8 (CCK8) and 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Cell migration, invasion, and growth were analyzed using the wound healing and transwell assay. Promoter activity and transcription was analyzed using the luciferase reporter assay. Chromatin immunoprecipitation was used to detect binding of UBE2C to 5'UTR-ZEB1/2. Results: We observed that 4,5-ubiquitin-conjugating enzyme E2C (UBE2C) expression was higher in NSCLC tissue than in the adjacent normal tissue and was associated with increased cell proliferation and invasion. UBE2C enhanced NSCLC progression and metastasis by affecting the cell cycle and inhibiting apoptosis. We also observed that miR-548e-5p was significantly downregulated in lung cancer tissue specimens, which decreased the expression of its direct substrate, UBE2C. Moreover, miR-548e-5p overexpression and UBE2C under-expression significantly suppressed lung cancer cell proliferation, migration, and invasion. Luciferase reporter and chromatin immunoprecipitation assays indicated that miR-548e-5p directly binds to the 3'-UTR of UBE2C and decreases UBE2C mRNA expression. Furthermore, UBE2C knockdown downregulated the mesenchymal marker vimentin and upregulated the epithelial marker E-cadherin. Bioinformatics assays, coupled with western blotting and luciferase assays, revealed that UBE2C directly binds to the 5'-untranslated region (UTR) of the transcript of the E-cadherin repressor ZEB1/2 and promotes EMT in lung cancer cells. Conclusion: miR-548e-5p directly binds to the 3'-UTR of UBE2C and decreases UBE2C mRNA expression. UBE2C is an oncogene that promotes EMT in lung cancer cells by directly targeting the 5'-UTR of the transcript encoding the E-cadherin repressor ZEB1/2. miR-548e-5p, UBE2C, and ZEB1/2 constitute the miR-548e-5p-UBE2C-ZEB1/2 signal axis, which enhances cancer cell invasiveness by directly interacting with e EMT marker proteins. We believe that the miR-548e-5p-UBE2C-ZEB1/2 signal axis may be a suitable diagnostic marker and a potential target for lung cancer therapy.