RESUMO
BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.
Assuntos
Erros Inatos do Metabolismo Lipídico , Avaliação de Resultados em Cuidados de Saúde , Criança , Humanos , Acil-CoA Desidrogenase , Canadá , Estudos Prospectivos , Pré-EscolarRESUMO
Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.
Assuntos
Acil-CoA Desidrogenases , Erros Inatos do Metabolismo Lipídico , Humanos , Animais , Camundongos , Acil-CoA Desidrogenase/genética , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Acil-CoA Desidrogenases/genéticaRESUMO
It is now widely accepted that aberrant splicing of constitutive exons is often caused by mutations affecting cis-acting splicing regulatory elements, but there is a misconception that all exons have an equal dependency on splicing regulatory elements and thus a similar susceptibility to aberrant splicing. We investigated exonic mutations in ACADM exon 5 to experimentally examine their effect on splicing and found that 7 out of 11 tested mutations affected exon inclusion, demonstrating that this constitutive exon is particularly vulnerable to exonic splicing mutations. Employing ACADM exon 5 and 6 as models, we demonstrate that the balance between splicing enhancers and silencers, flanking intron length, and flanking splice site strength are important factors that determine exon definition and splicing efficiency of the exon in question. Our study shows that two constitutive exons in ACADM have different inherent vulnerabilities to exonic splicing mutations. This suggests that in silico prediction of potential pathogenic effects on splicing from exonic mutations may be improved by also considering the inherent vulnerability of the exon. Moreover, we show that single nucleotide polymorphism that affect either of two different exonic splicing silencers, located far apart in exon 5, all protect against both immediately flanking and more distant exonic splicing mutations.
Assuntos
Processamento Alternativo , Splicing de RNA , Éxons/genética , Humanos , Íntrons , Sítios de Splice de RNA , Splicing de RNA/genéticaRESUMO
Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial ß-oxidation of fatty acids resulting in hypoketotic hypoglycemia, hepatopathy, and often fatal outcome in undiagnosed children. Introduction of tandem mass spectrometry-based newborn screening programs in the late 1990s has significantly reduced morbidity and mortality in MCAD deficiency; however, neonatal death in individuals with early disease manifestation and severe hypoglycemia may still occur. We describe the fatal disease course in eight newborns with MCAD deficiency, aiming to raise awareness for early clinical symptoms and the life-saving treatment, and promote systematic post-mortem protocols for biochemical and genetic testing, necessary for correct diagnosis and counselling of the family if unexpected death occurred in the neonatal period.Conclusion: Early newborn screening and awareness for clinical symptoms is lifesaving in MCAD deficiency, which may present with fatal neonatal crisis. Systematic post-mortem diagnostic protocols are needed for sudden neonatal deaths.
Assuntos
Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Morte Perinatal , Acil-CoA Desidrogenase/deficiência , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , Triagem Neonatal/métodosRESUMO
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of mitochondrial ß-oxidation. Confirmation diagnostics after newborn screening (NBS) can be performed either by enzyme testing and/or by sequencing of the ACADM gene. Here, we report the results from enzyme testing in lymphocytes with gene variants from molecular analysis of the ACADM gene and with the initial acylcarnitine concentrations in the NBS sample. From April 2013 to August 2019, in 388 individuals with characteristic acylcarnitine profiles suggestive of MCADD the octanoyl-CoA-oxidation was measured in lymphocytes. In those individuals with residual activities <50%, molecular genetic analysis of the ACADM gene was performed. In 50% of the samples (195/388), MCADD with a residual activity ranging from 0% to 30% was confirmed. Forty-five percent of the samples (172/388) showed a residual activity >35% excluding MCADD. In the remaining 21 individuals, MCAD residual activity ranged from 30% to 35%. The latter group comprised both heterozygous carriers and individuals carrying two gene variants on different alleles. Twenty new variants could be identified and functionally classified based on their effect on enzyme function. C6 and C8 acylcarnitine species in NBS correlated with MCAD activity and disease severity. MCADD was only confirmed in half of the cases referred suggesting a higher false positive rate than expected. Measurement of the enzyme function in lymphocytes allowed fast confirmation diagnostics and clear determination of the pathogenicity of new gene variants. There is a clear correlation between genotype and enzyme function underlining the reproducibility of the functional measurement in vitro.
Assuntos
Acil-CoA Desidrogenase/deficiência , Testes Genéticos , Erros Inatos do Metabolismo Lipídico/genética , Acil-CoA Desidrogenase/genética , Alelos , Genótipo , Heterozigoto , Humanos , Recém-Nascido , Mutação , Triagem Neonatal , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Medium-Chain Acyl-CoA Dehydrogenase (MCAD) deficiency is a fatty acid oxidation disorder that can have variable clinical severity. There is still limited information on its clinical presentation and longitudinal history by genotype, and effectiveness of newborn screening (NBS). METHODS: Retrospective data were collected from 90 patients (44 female, 46 male) to compare biochemical data with clinical outcomes. The frequency of adverse events (number of hypoglycemia-related ER visits and admissions) was assessed by genotype (homozygosity or not for the common pathogenic variant, p.Lys329Glu, in the ACADM gene), and method of diagnosis (NBS vs. clinical). RESULTS: MCAD deficiency in Utah was more frequent compared to the United States average (1: 9266 versus 1:17,759 newborns). With age, C8-carnitine did not change significantly whereas C2-carnitine decreased (p < .001), possibly reflecting reduced carnitine supplementation typically seen with age. Children with MCAD deficiency had normal growth. p.Lys329Glu homozygotes had higher NBS C8-carnitine (23.4 ± 19.6 vs. 6.6 ± 3.0 µmol/L) and lifetime plasma C8-carnitine levels (6.2 ± 5 vs. 3.6 ± 1.9 µmol/L) compared to patients with at least one other pathogenic variant (p < .001 for both) and higher transaminases compared to compound heterozygotes (ALT 41.9 ± 6.2 vs. 31.5 ± 3.7 U/L, AST 63.9 ± 5.8 vs. 45.7 ± 1.8 U/L, p < .05 for both). On average, p.Lys329Glu homozygotes had more hypoglycemic events than compound heterozygotes (1.44 versus 0.49 events/patient) as did patients diagnosed clinically compared to those diagnosed by NBS (2.15 versus 0.62 events/patient), though these differences were not statistically significant. Neonatal death was observed before results of newborn screening were available in one patient homozygous for the common p.Lys329Glu pathogenic variant, but severe neonatal complications (hypoglycemia, cardiac arrhythmia) were also seen in patients with other mutations. No irreversible complications were observed after diagnosis in any patient with MCAD deficiency. DISCUSSION: Homozygosity for the common ACADM p.Lys329Glu pathogenic variant was associated with increased levels of C8-carnitine and transaminases. Newborn screening provides the opportunity to reduce morbidity and post-neonatal mortality in all patients with MCAD deficiency, regardless of genotype.
Assuntos
Acil-CoA Desidrogenase/deficiência , Genótipo , Homozigoto , Erros Inatos do Metabolismo Lipídico/diagnóstico , Triagem Neonatal , Acil-CoA Desidrogenase/genética , Adolescente , Adulto , Carnitina/sangue , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/mortalidade , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Transaminases/sangue , Estados Unidos , Utah , Adulto JovemRESUMO
Sudden unexpected death in infants (SUDI) is a devastating event, and unfortunately is still a burden in many parts of the world, including in South Africa. Due to the absence of routine testing for inborn metabolic diseases in newborns and in a post-mortem context, little is known about the presence of metabolic diseases in local SUDI cases. The aim of this study was to genotype five candidate variants previously associated with metabolic disorders in a cohort of SUDI cases (n = 169) from Salt River Mortuary, Cape Town. DNA was isolated from blood, and SNaPshot® PCR and Sanger sequencing were used to genotype the following variants: ACADM: c.583G > A, ACADM: c.985A > G, GCDH: c.877G > A/T, GALT: c.404C > G/T and GALT: c.563A > G. Four carriers of GCDH: c.877G > A/T were identified, while one infant was homozygous for the founder mutation GALT: c.404C > G/T; the latter which is causative of galactosaemia and was previously undiagnosed. During the follow-up with the family, it emerged that the affected infant's identical twin had subsequently demised. The findings in this study highlight possible new candidate variants to assess in South African SUDI cases, and these results directly contribute to the development of a molecular autopsy which is locally relevant. It is evident that until newborn screening becomes routine and accessible in South Africa, molecular autopsies should include testing for inherited metabolic disorders, as it holds potential to save lives.
Assuntos
Acil-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Epidemiologia Molecular , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Acil-CoA Desidrogenase/deficiência , Adulto , DNA/isolamento & purificação , Feminino , Triagem de Portadores Genéticos , Loci Gênicos , Genótipo , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/genética , Masculino , África do Sul/epidemiologia , Morte Súbita do Lactente/epidemiologiaRESUMO
OBJECTIVE: To emphasize the mechanism of concurrent exercise effect on lipid disorders in insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS: Twenty male ApoE knockout mice were randomly divided into two groups: HFD group (n = 10) fed a high fat diet, and HFDE group (n = 10) with high-fat diet intervention for 12 weeks and swimming exercise. Other ten healthy male C57BL/6 J mice were fed a normal diet, and included as control group. Retro-orbital blood samples were collected for biochemical analysis. Oil red O staining of liver tissues was performed to confirm the exercise effect. Western blotting was performed to evaluate the expressions of PPAR-γ, CPT-1, MCAD. RESULTS: The levels of TG, TC, LDL, FFA, FIN, FPG and Homa-IRI in the HFD group were significantly higher than ND group, while these were markedly decreased in the HFDE group compared with HFD group. The Oil Red O staining of liver samples further confirmed the exercise effect on the change of lipid deposition in the liver. Western blotting showed increased expressions of PPAR-γ, CPT-1, MCAD induced by high fat diet were significantly downregulated by exercise. CONCLUSION: A concurrent 12-week exercise protocol alleviated the lipid metabolism disorders of IR and NAFLD, probably via PPAR-γ/CPT-1/MCAD signaling.
Assuntos
Caderinas/genética , Carnitina O-Palmitoiltransferase/genética , Metabolismo dos Lipídeos/genética , Hepatopatia Gordurosa não Alcoólica/terapia , PPAR gama/genética , Condicionamento Físico Animal , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Caderinas/agonistas , Caderinas/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/agonistas , PPAR gama/metabolismo , Transdução de Sinais , Natação , Triglicerídeos/sangueRESUMO
We previously showed that medium chain acyl-coenzyme A dehydrogenase (MCAD, key regulator of fatty acid oxidation) is positively modulated in the heart by the cardioprotective kinase, phosphoinositide 3-kinase (PI3K(p110α)). Disturbances in cardiac metabolism are a feature of heart failure (HF) patients and targeting metabolic defects is considered a potential therapeutic approach. The specific role of MCAD in the adult heart is unknown. To examine the role of MCAD in the heart and to assess the therapeutic potential of increasing MCAD in the failing heart, we developed a gene therapy tool using recombinant adeno-associated viral vectors (rAAV) encoding MCAD. We hypothesised that increasing MCAD expression may recapitulate the cardioprotective properties of PI3K(p110α). rAAV6:MCAD or rAAV6:control was delivered to healthy adult mice and to mice with pre-existing pathological hypertrophy and cardiac dysfunction due to transverse aortic constriction (TAC). In healthy mice, rAAV6:MCAD induced physiological hypertrophy (increase in heart size, normal systolic function and increased capillary density). In response to TAC (~15 weeks), heart weight/tibia length increased by ~60% in control mice and ~45% in rAAV6:MCAD mice compared with sham. This was associated with an increase in cardiomyocyte cross-sectional area in both TAC groups which was similar. However, hypertrophy in TAC rAAV6:MCAD mice was associated with less fibrosis, a trend for increased capillary density and a more favourable molecular profile compared with TAC rAAV6:control mice. In summary, MCAD induced physiological cardiac hypertrophy in healthy adult mice and attenuated features of pathological remodelling in a cardiac disease model.
Assuntos
Cardiomegalia/terapia , Terapia Genética , Insuficiência Cardíaca/tratamento farmacológico , Substâncias Protetoras/farmacologia , Animais , Cardiomegalia/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genéticaRESUMO
BACKGROUND: Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a representative disorder of fatty acid oxidation and is one of the most prevalent inborn errors of metabolism among Caucasian populations. In Japan, however, it was as late as 2000 when the first patient was found, and enzymatic and genetic evaluation of MCAD deficiency began. METHODS: We measured octanoyl-CoA dehydrogenase activity in lymphocytes of symptomatic children and newborn screening (NBS)-positive subjects who showed elevated levels of C8-acylcarnitine in blood. The results were further confirmed by direct sequencing of the ACADM gene. RESULTS: The disease was diagnosed in 9 out of 18 symptomatic children. The affected patients showed residual activities from 0% to 3% of the normal average value, except for one patient with 10% activity. Concerning 50 NBS-positive subjects, 18 with enzymatic activities around 10% or lower and 14 with activities ranging from 13% to 30% were judged to be affected patients, and biallelic variants were detected in most of the cases tested. Newborns with higher enzymatic activities were estimated to be heterozygous carriers or healthy subjects, though biallelic variants were detected in 5 of them. Genetic analysis detected 22 kinds of variant alleles. The most prevalent was c.449_452delCTGA (p.T150Rfs), which was followed by c.50G>A (p.R17H), c.1085G>A (p.G362E), c.157C>T (p.R53C), and c.843A>T (p.R281S); these five variants accounted for approximately 60% of all the alleles examined. CONCLUSION: Our study has revealed the unique genetic backgrounds of MCAD deficiency among Japanese, based on the largest series of non-Caucasian cases. A continuous spectrum of severity was also observed in our series of NBS-positive cases, suggesting that it is essential for every nation and ethnic group to accumulate its own information on gene variants, together with their enzymatic evaluation, in order to establish an efficient NBS system for MCAD deficiency.
Assuntos
Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/genética , Testes Genéticos , Hipoglicemia/genética , Erros Inatos do Metabolismo Lipídico/genética , Triagem Neonatal , Acil-CoA Desidrogenase/sangue , Alelos , Pré-Escolar , Feminino , Genótipo , Heterozigoto , Humanos , Hipoglicemia/diagnóstico , Hipoglicemia/epidemiologia , Hipoglicemia/fisiopatologia , Lactente , Recém-Nascido , Japão/epidemiologia , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo Lipídico/epidemiologia , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Masculino , Mutação , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Since the first case was detected in 2000, there has been a remarkable increase in Japanese patients diagnosed with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Genetic analysis has revealed a spectrum of mutations that is quite different from those observed in Caucasian populations. In 2014, Japan initiated nationwide newborn screening (NBS) for MCAD using tandem mass spectrometry (MS/MS). It is an urgent issue to assess the risk of acute metabolic decompensation from the respective novel mutations found thus far. METHODS: To evaluate the pathogenic effect of each mutation, we established a eukaryotic cell expression system and prepared 11 mutant proteins identified in five symptomatic patients and eight MS/MS-NBS-positive newborns, as well as two common Caucasian mutations, p.K329E (c.985G>A) and p.Y67H (c.157C>T) for comparison. RESULTS: The expression of four mutant proteins (p.Q45R, p.P92L, p.P128X and p.Y397N) were severely impaired, whereas the others expressed normally, as did p.K329E and p.Y67H. Based on their dehydrogenase activities toward n-octanoyl-CoA, we determined three mutations (p.R53C, p.R281S and p.G362E) to be disease-causing, two mutations having (p.R17H and p.M274V) to be of marginal risk, and two mutations (p.K271E and p.I416T) as benign. Their allele-specific activities were as a whole in accordance with those estimated from the results of measurement in peripheral blood mononuclear cells. CONCLUSION: As most of the mutations detected in the Japanese population are unique, prudent genetic and enzymatic analysis is essential to precisely evaluate the latent risk of clinical onset for screening-positive newborns.
Assuntos
Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Erros Inatos do Metabolismo Lipídico/diagnóstico , Mutação , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem/métodos , Povo Asiático/genética , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Japão , Erros Inatos do Metabolismo Lipídico/etnologia , Erros Inatos do Metabolismo Lipídico/genética , Masculino , População Branca/genéticaRESUMO
INTRODUCTION: There is limited understanding of relationships between genotype, phenotype and other conditions contributing to health in neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) identified through newborn screening. METHODS: Retrospective analysis of comprehensive data from a cohort of 221 newborn-screened subjects identified as affected with MCADD in the Inborn Errors of Metabolism - Information System (IBEM-IS), a long term follow-up database of the Inborn Errors of Metabolism Collaborative, was performed. RESULTS: The average age at notification of first newborn screen results to primary care or metabolic providers was 7.45days. The average octanoylcarnitine (C8) value on first newborn screen was 11.2µmol/L (median 8.6, range 0.36-43.91). A higher C8 level correlated with an earlier first subspecialty visit. Subjects with low birth weight had significantly lower C8 values. Significantly higher C8 values were found in symptomatic newborns, in newborns with abnormal lab testing in addition to newborn screening and/or diagnostic tests, and in subjects homozygous for the c.985A>G ACADM gene mutation or compound heterozygous for the c.985A>G mutation and deletions or other known highly deleterious mutations. Subjects with neonatal symptoms, or neonatal abnormal labs, or neonatal triggers were more likely to have at least one copy of the severe c.985A>G ACADM gene mutation. C8 and genotype category were significant predictors of the likelihood of having neonatal symptoms. Neonates with select triggers were more likely to have symptoms and laboratory abnormalities. CONCLUSIONS: This collaborative study is the first in the United States to describe health associations of a large cohort of newborn-screened neonates identified as affected with MCADD. The IBEM-IS has utility as a platform to better understand the characteristics of individuals with newborn-screened conditions and their follow-up interactions with the health system.
Assuntos
Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo/genética , Triagem Neonatal , Acil-CoA Desidrogenase/fisiologia , Feminino , Genótipo , Homozigoto , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Masculino , Erros Inatos do Metabolismo/fisiopatologia , MutaçãoRESUMO
POLICY POINTS: Newborn screening not only saves lives but can also yield net societal economic benefit, in addition to benefits such as improved quality of life to affected individuals and families. Calculations of net economic benefit from newborn screening include the monetary equivalent of avoided deaths and reductions in costs of care for complications associated with late-diagnosed individuals minus the additional costs of screening, diagnosis, and treatment associated with prompt diagnosis. Since 2001 the Washington State Department of Health has successfully implemented an approach to conducting evidence-based economic evaluations of disorders proposed for addition to the state-mandated newborn screening panel. CONTEXT: Economic evaluations can inform policy decisions on the expansion of newborn screening panels. This article documents the use of cost-benefit models in Washington State as part of the rule-making process that resulted in the implementation of screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and 4 other metabolic disorders in 2004, cystic fibrosis (CF) in 2006, 15 other metabolic disorders in 2008, and severe combined immune deficiency (SCID) in 2014. METHODS: We reviewed Washington State Department of Health internal reports and spreadsheet models of expected net societal benefit of adding disorders to the state newborn screening panel. We summarize the assumptions and findings for 2 models (MCAD and CF) and discuss them in relation to findings in the peer-reviewed literature. FINDINGS: The MCAD model projected a benefit-cost ratio of 3.4 to 1 based on assumptions of a 20.0 percentage point reduction in infant mortality and a 13.9 percentage point reduction in serious developmental disability. The CF model projected a benefit-cost ratio of 4.0-5.4 to 1 for a discount rate of 3%-4% and a plausible range of 1-2 percentage point reductions in deaths up to age 10 years. CONCLUSIONS: The Washington State cost-benefit models of newborn screening were broadly consistent with peer-reviewed literature, and their findings of net benefit appear to be robust to uncertainty in parameters. Public health newborn screening programs can develop their own capacity to project expected costs and benefits of expansion of newborn screening panels, although it would be most efficient if this capacity were shared among programs.
Assuntos
Análise Custo-Benefício/legislação & jurisprudência , Intervenção Médica Precoce/economia , Política de Saúde/legislação & jurisprudência , Triagem Neonatal/economia , Anos de Vida Ajustados por Qualidade de Vida , Análise Custo-Benefício/métodos , Fibrose Cística/diagnóstico , Fibrose Cística/economia , Fibrose Cística/terapia , Intervenção Médica Precoce/legislação & jurisprudência , Política de Saúde/economia , Humanos , Recém-Nascido , Modelos Econômicos , Triagem Neonatal/legislação & jurisprudência , Avaliação de Resultados em Cuidados de Saúde/economia , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , WashingtonRESUMO
BACKGROUND: Embryonic acute exposure to ethanol (EtOH), lithium, and homocysteine (HCy) induces cardiac defects at the time of exposure; folic acid (FA) supplementation protects normal cardiogenesis (Han et al., , ; Serrano et al., ). Our hypothesis is that EtOH exposure and FA protection relate to lipid and FA metabolism during mouse cardiogenesis and placentation. METHODS: On the morning of conception, pregnant C57BL/6J mice were placed on either of two FA-containing diets: a 3.3 mg health maintenance diet or a high FA diet of 10.5 mg/kg. Mice were injected a binge level of EtOH, HCy, or saline on embryonic day (E) 6.75, targeting gastrulation. On E15.5, cardiac and umbilical blood flow were examined by ultrasound. Embryonic cardiac tissues were processed for gene expression of lipid and FA metabolism; the placenta and heart tissues for neutral lipid droplets, or for medium chain acyl-dehydrogenase (MCAD) protein. RESULTS: EtOH exposure altered lipid-related gene expression on E7.5 in comparison to control or FA-supplemented groups and remained altered on E15.5 similarly to changes with HCy, signifying FA deficiency. In comparison to control tissues, the lipid-related acyl CoA dehydrogenase medium length chain gene and its protein MCAD were altered with EtOH exposure, as were neutral lipid droplet localization in the heart and placenta. CONCLUSION: EtOH altered gene expression associated with lipid and folate metabolism, as well as neutral lipids, in the E15.5 abnormally functioning heart and placenta. In comparison to controls, the high FA diet protected the embryo and placenta from these effects allowing normal development. Birth Defects Research (Part A) 106:749-760, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc.
Assuntos
Etanol/toxicidade , Ácido Fólico/farmacologia , Gastrulação/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cardiopatias Congênitas , Coração/embriologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Placenta/metabolismo , Animais , Feminino , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/prevenção & controle , Camundongos , GravidezAssuntos
Gastroenterite , Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Acil-CoA Desidrogenase/deficiência , Gastroenterite/complicações , Gastroenterite/diagnóstico , Humanos , Hipoglicemia/diagnóstico , Hipoglicemia/etiologia , Lactente , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , MasculinoRESUMO
BACKGROUND & AIMS: The hepatocyte-derived hormone fibroblast growth factor 21 (FGF21) is a hormone-like regulator of metabolism. The nicotinamide adenine dinucleotide-dependent deacetylase SIRT1 regulates fatty acid metabolism through multiple nutrient sensors. Hepatic overexpression of SIRT1 reduces steatosis and glucose intolerance in obese mice. We investigated mechanisms by which SIRT1 controls hepatic steatosis in mice. METHODS: Liver-specific SIRT1 knockout (SIRT1 LKO) mice and their wild-type littermates (controls) were divided into groups that were placed on a normal chow diet, fasted for 24 hours, or fasted for 24 hours and then fed for 6 hours. Liver tissues were collected and analyzed by histologic examination, gene expression profiling, and real-time polymerase chain reaction assays. Human HepG2 cells were incubated with pharmacologic activators of SIRT1 (resveratrol or SRT1720) and mitochondrion oxidation consumption rate and immunoblot analyses were performed. FGF21 was overexpressed in SIRT1 LKO mice using an adenoviral vector. Energy expenditure was assessed by indirect calorimetry. RESULTS: Prolonged fasting induced lipid deposition in livers of control mice, but severe hepatic steatosis in SIRT1 LKO mice. Gene expression analysis showed that fasting up-regulated FGF21 in livers of control mice but not in SIRT1 LKO mice. Decreased hepatic and circulating levels of FGF21 in fasted SIRT1 LKO mice were associated with reduced hepatic expression of genes involved in fatty acid oxidation and ketogenesis, and increased expression of genes that control lipogenesis, compared with fasted control mice. Resveratrol or SRT1720 each increased the transcriptional activity of the FGF21 promoter (-2070/+117) and levels of FGF21 messenger RNA and protein in HepG2 cells. Surprisingly, SIRT1 LKO mice developed late-onset obesity with impaired whole-body energy expenditure. Hepatic overexpression of FGF21 in SIRT1 LKO mice increased the expression of genes that regulate fatty acid oxidation, decreased fasting-induced steatosis, reduced obesity, increased energy expenditure, and promoted browning of white adipose tissue. CONCLUSIONS: SIRT1-mediated activation of FGF21 prevents liver steatosis caused by fasting. This hepatocyte-derived endocrine signaling appears to regulate expression of genes that control a brown fat-like program in white adipose tissue, energy expenditure, and adiposity. Strategies to activate SIRT1 or FGF21 could be used to treat fatty liver disease and obesity.
Assuntos
Metabolismo Energético/fisiologia , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Sirtuína 1/metabolismo , Animais , Biomarcadores/metabolismo , Calorimetria Indireta , Jejum , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Immunoblotting , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real , Regulação para CimaRESUMO
Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated. In the present study, proteomic analyses looking at both changes at the expression level as well as to glycative modifications of the mitochondrial proteome were performed. Two-dimensional difference gel electrophoresis analysis revealed 16 differentially expressed proteins with aging. Thirteen exhibited a decreased expression and are crucial enzymes related to OXPHOS chain complex I/V components, TCA cycle or fatty acid ß-oxidation reaction. On the other hand, 2 enzymes involved in fatty acid ß-oxidation cycle were increased in aged mitochondria. Immunodetection and further identification of glycated proteins disclosed a set of advanced glycation end product-modified proteins, including 6 enzymes involved in the fatty acid ß-oxidation process, and 2 enzymes of the TCA/urea cycles. A crucial antioxidant enzyme, catalase, was among the most strongly glycated proteins. In addition, several AGE-damaged enzymes (aldehyde dehydrogenase 2, medium chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA dehydrogenase) exhibited a decreased activity with age. Taken together, these data suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to (i) decreased expression of OXPHOS complex I/V components and (ii) glycative damage to key fatty acid ß-oxidation and TCA/urea cycle enzymes.
Assuntos
Envelhecimento/patologia , Biomarcadores/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica , Envelhecimento/metabolismo , Animais , Western Blotting , Feminino , Glicosilação , Mitocôndrias Hepáticas/patologia , Oxirredução , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial BidimensionalRESUMO
BACKGROUND & AIMS: This study examined whether the regulation of resistin and visfatin could reduce damage and improve regeneration in both steatotic and non-steatotic livers undergoing partial hepatectomy under ischemia-reperfusion, a procedure commonly applied in clinical practice to reduce bleeding. METHODS: Resistin and visfatin were pharmacologically modulated in lean and obese animals undergoing partial hepatectomy under ischemia-reperfusion. RESULTS: No evident role for these adipocytokines was observed in non-steatotic livers. However, obese animals undergoing liver surgery showed increased resistin in liver and plasma, without changes in adipose tissue, together with visfatin downregulation in liver and increment in plasma and adipose tissue. Endogenous resistin maintains low levels of visfatin in the liver by blocking its hepatic uptake from the circulation, thus regulating the visfatin detrimental effects on hepatic damage and regenerative failure. Indeed, the administration of anti-resistin antibodies increased hepatic accumulation of adipocyte-derived visfatin, exacerbating damage and regenerative failure. Interestingly, treatment with anti-visfatin antibodies protected steatotic livers, and similar results were obtained with the concomitant inhibition of resistin and visfatin. Thus, when visfatin was inhibited, the injurious effects of anti-resistin antibodies disappeared. Herein we show that upregulation of visfatin increased NAD levels in the remnant steatotic liver, whereas visfatin inhibition decreased them. These later observations suggest that visfatin may favour synthesis of NAD instead of DNA and induces alterations in amino acid metabolism-urea cycle and NO production, overall negatively affecting liver viability. CONCLUSIONS: Our results indicate the clinical potential of visfatin blocking-based therapies in steatotic livers undergoing partial hepatectomy with ischemia-reperfusion.
Assuntos
Citocinas/fisiologia , Fígado Gorduroso/fisiopatologia , Regeneração Hepática/fisiologia , Fígado/metabolismo , Nicotinamida Fosforribosiltransferase/fisiologia , Resistina/fisiologia , Animais , Citocinas/antagonistas & inibidores , Hepatectomia , Masculino , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Ratos , Ratos Wistar , Ratos Zucker , Reperfusão , Resistina/antagonistas & inibidoresRESUMO
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is a fatty acid oxidation disorder included on newborn screening (NBS) panels in many regions that have expanded to using tandem mass spectrometry for acylcarnitine screening. False positive (FP) screening results for MCAD deficiency have previously been linked to very low birth weight (VLBW) infants and those who are heterozygous for the common mutation, p.K324E. Previous studies have identified these causes of FP screens by sequencing residual dried blood spots. From our cohort of FP screens in Georgia, we identified an elevation at the same mass as octenoylcarnitine (C8:1) causing elevations of octanoylcarnitine (C8) not due to MCAD deficiency. We reviewed biochemical results from 2011 to 2013 for all newborn screens positive for MCAD deficiency in Georgia to identify screening criteria to allow these cases to be identified prospectively, thus saving families the stress of additional testing on their newborn and reducing healthcare costs while improving screening performance for the screening program. We identified the C8/C8:1 ratio as an effective marker, and developed criteria that will reduce FP screening results due to this interfering substance.
Assuntos
Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/epidemiologia , Triagem Neonatal/métodos , Acil-CoA Desidrogenases/genética , Biomarcadores/metabolismo , Carnitina/análogos & derivados , Carnitina/sangue , Reações Falso-Positivas , Heterozigoto , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Estados Unidos/epidemiologiaRESUMO
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid ß-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.