RESUMO
Both lysine and arginine methyltransferases are thought to be promising therapeutic targets for malignant tumors, yet how these methyltransferases function in malignant tumors, especially hepatocellular carcinoma (HCC), has not been fully elucidated. Here, we reported that SMYD4, a lysine methyltransferase, acts as an oncogene in HCC. SMYD4 was highly upregulated in HCC and promoted HCC cell proliferation and metastasis. Mechanistically, PRMT5, a well-known arginine methyltransferase, was identified as a SMYD4-binding protein. SMYD4 monomethylated PRMT5 and enhanced the interaction between PRMT5 and MEP50, thereby promoting the symmetrical dimethylation of H3R2 and H4R3 on the PRMT5 target gene promoter and subsequently activating DVL3 expression and inhibiting expression of E-cadherin, RBL2, and miR-29b-1-5p. Moreover, miR-29b-1-5p was found to inversely regulate SMYD4 expression in HCC cells, thus forming a positive feedback loop. Furthermore, we found that the oncogenic effect of SMYD4 could be effectively suppressed by PRMT5 inhibitor in vitro and in vivo. Clinically, high coexpression of SMYD4 and PRMT5 was associated with poor prognosis of HCC patients. In summary, our study provides a model of crosstalk between lysine and arginine methyltransferases in HCC and highlights the SMYD4-PRMT5 axis as a potential therapeutic target for the treatment of HCC.
Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , MicroRNAs , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Camundongos , Metilação , Masculino , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Retroalimentação Fisiológica , Feminino , Camundongos NusRESUMO
N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335. In NDRG2low ATL, cytoplasmic PRMT5 enhanced HSP90A chaperone activity via arginine methylation, leading to tumour progression and the maintenance of oncogenic client proteins. Therefore, we examined whether the inhibition of PRMT5 activity is a drug target in NDRG2low tumours. The knockdown of PRMT5 and binding partner methylsome protein 50 (MEP50) expression significantly demonstrated the suppression of cell proliferation via the degradation of AKT and NEMO in NDRG2low ATL cells, whereas NDRG2-expressing cells did not impair the stability of client proteins. We suggest that the relationship between PRMT5/MEP50 and the downregulation of NDRG2 may exhibit a novel vulnerability and a therapeutic target. Treatment with the PRMT5-specific inhibitors CMP5 and HLCL61 was more sensitive in NDRG2low cancer cells than in NDRG2-expressing cells via the inhibition of HSP90 arginine methylation, along with the degradation of client proteins. Thus, interference with PRMT5 activity has become a feasible and effective strategy for promoting cancer vulnerability in NDRG2low ATL.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Leucemia-Linfoma de Células T do Adulto , Linfoma , Neoplasias , Adulto , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Metilação , Proteínas Supressoras de Tumor/metabolismoRESUMO
Mesothelioma is a highly aggressive cancer of the mesothelial lining that is caused by exposure to asbestos. Surgical resection followed by chemotherapy is the current treatment strategy, but this is marginally successful and leads to drug-resistant disease. We are interested in factors that maintain the aggressive mesothelioma cancer phenotype as therapy targets. Protein arginine methyltransferase 5 (PRMT5) functions in concert with the methylosome protein 50 (MEP50) cofactor to catalyze symmetric dimethylation of key arginine resides in histones 3 and 4 which modifies the chromatin environment to alter tumor suppressor and oncogene expression and enhance cancer cell survival. Our studies show that PRMT5 or MEP50 loss reduces H4R3me2s formation and that this is associated with reduced cancer cell spheroid formation, invasion, and migration. Treatment with sulforaphane (SFN), a diet-derived anticancer agent, reduces PRMT5/MEP50 level and H4R3me2s formation and suppresses the cancer phenotype. We further show that SFN treatment reduces PRMT5 and MEP50 levels and that this reduction is required for SFN suppression of the cancer phenotype. SFN treatment also reduces tumor formation which is associated with reduced PRMT5/MEP50 expression and activity. These findings suggest that SFN may be a useful mesothelioma treatment agent that operates, at least in part, via suppression of PRMT5/MEP50 function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Isotiocianatos/farmacologia , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Sulfóxidos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Anticarcinógenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Mesotelioma/metabolismo , Camundongos Endogâmicos NOD , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The protein arginine methyltransferase 5 (PRMT5) and its catalytic partner methylosome protein MEP50 (WDR77) catalyse the mono- and symmetric di-methylation of selective arginines in various histones and non-histone target proteins. It has emerged as a crucial epigenetic regulator in cell proliferation and differentiation; which also reported to be overexpressed in many forms of cancers in humans. In this study, we aimed to assess the modulations in the expression of this enzyme upon exposure to the well-studied natural compound from the spice turmeric, curcumin. We exposed the lung and breast cancer cell lines (A549 and MCF-7) to curcumin (2 and 20 µM) and observed a highly significant inhibitory effect on the expression of both PRMT5 and MEP50. The level of symmetrical dimethylarginine (SDMA) in multiple proteins, and more specifically, the H4R3me2s mark (which predominates in GC-rich motifs in nucleosomal DNA) was also diminished significantly. We also found that curcumin significantly reduced the level and enrichment of the transcription factors Sp1 and NF-YA which shares their binding sites within the GC-rich region of the PRMT5 proximal promoter. Furthermore, the involvement of both PKC-p38-ERK-cFos and AKT-mTOR signalling was observed in reducing the Sp1 and NF-YA expression by curcumin. Therefore, we propose curcumin decreased the expression of PRMT5 in these cells by affecting at least these two transcription factors. Altogether, we report a new molecular target of curcumin and further elucidation of this proposed mechanism through which curcumin affects the PRMT5-MEP50 methyltransferase expression might be explored for its therapeutic application.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Fator de Ligação a CCAAT/metabolismo , Curcumina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/biossíntese , Fator de Transcrição Sp1/metabolismo , Células A549 , Humanos , Células MCF-7RESUMO
The studies on lead (Pb) exposure linking to epigenetic modulations are caused by its differential actions on global DNA methylation and histone modifications. These epigenetic changes may result in increased accessibility of the transcription factors to promoter DNA-binding elements leading to activation and expression of the gene. The protein arginine methyltransferase 5 (PRMT5) and its partner methylosome protein 50 (MEP50) together catalyze the mono- and symmetric dimethylation of arginine residues in many histone and non-histone protein substrates. Moreover, it is overexpressed in many forms of cancer. In the present study, the effects of Pb on the PRMT5 and MEP50 expression and formation of the symmetrically dimethylated arginine (SDMA), the catalytic product of the PRMT5-MEP50 complex were analyzed in vitro after exposing the A549 and MCF-7 cells. The results show that exposure to 0.1 and 1â µM of Pb strongly enhanced the expression of both PRMT5 and MEP50 transcript and protein leading to increased SDMA levels globally with H4R3 being increasingly symmetrically dimethylated in a dose-dependent manner after 48â h of Pb exposure in both cell types. The methylation-specific PCR also revealed that the CpG island present on the PRMT5 promoter proximal region was increasingly demethylated as the dose of Pb increased in a 48-h exposure window in both cells, with MCF-7 being more responsive to Pb-mediated PRMT5 promoter demethylation. The bisulfite sequencing confirmed this effect. The findings therefore indicate that Pb exposure increasing the PRMT5 expression might be one of the contributing epigenetic factors in the lead-mediated disease processes as PRMT5 has a versatile role in cellular functions and oncogenesis.
Assuntos
Ilhas de CpG , Desmetilação do DNA/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Chumbo/toxicidade , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases/biossíntese , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Células MCF-7 , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Fatores de TempoRESUMO
Protein arginine methyltransferase 5 (PRMT5) is the most promising anticancer target in PRMT family. In this study, based on the first S-adenosylmethionine (SAM) competitive small molecule inhibitor (17, compound number is from original paper) of PRMT5 reported in our recent paper, we determined the molecular mechanism of 17 interacting with PRMT5 by computational methods. Previously reported CMP5 was also thought of as a SAM competitive inhibitor of PRMT5, but the direct inhibition activity against PRMT5 at enzymatic level was not provided. Therefore, we tested the half-maximal inhibitory concentration (IC50) of CMP5 against PRMT5 at enzymatic level for the purpose of summarizing the interaction characteristics of SAM binding site inhibitors with PRMT5. Additionally, as the essential interacting partner of PRMT5, the binding attributes of the WD-repeat-containing protein MEP50 (methylosome protein 50) was investigated, and nine key residues that contribute most to PRMT5:MEP50 interaction were identified. These results could be helpful in discovering new potent and specific inhibitors of PRMT5, as well as in designing mutant residue assay to modulate the catalytic activity of PRMT5.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Descoberta de Drogas/métodos , Modelos Moleculares , Mapeamento de Interação de Proteínas/métodos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/ultraestrutura , S-Adenosilmetionina/química , Sítios de Ligação , Técnicas de Química Combinatória/métodos , Simulação por Computador , Inibidores Enzimáticos/química , Modelos Químicos , Ligação ProteicaRESUMO
Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in cellular processes at different stages of the cell cycle in a tissue specific manner. PRMT5 in complex with MEP50/p44/WDR77 associates with a plethora of partner proteins to symmetrically dimethylate arginine residues on target proteins in both the nucleus and the cytoplasm. Overexpression of PRMT5 has been observed in several cancers, making it an attractive drug target. The structure of the 453 kDa heterooctameric PRMT5:MEP50 complex bound to an S-adenosylmethionine analog and a substrate peptide provides valuable insights into this intriguing target.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Arginina/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Especificidade por SubstratoRESUMO
Protein arginine methylation is important for gene regulation and biological processes. Methylosome protein 50 (Mep50) is identified as a partner of protein arginine methyltransferase 5 (Prmt5), a major enzyme capable of symmetric dimethylation, in mammals and Xenopus. The isolation and characterization of medaka mep50 were reported in this paper. Medaka Mep50 is a homolog of human MEP50 with six WD40 domains. Medaka mep50 was ubiquitously expressed in the adult tissues and had maternal origin with continuous and dynamical expression during embryonic development detected by RT-PCR and in situ hybridization. A strong interaction of medaka Mep50 and Prmt5 was shown by yeast two hybridization. The expression pattern of mep50 is similar to that of prmt5 in medaka. The results suggested that medaka Mep50 could be a partner of Prmt5 and might play major roles in a variety of tissues in medaka.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Peixes/genética , Oryzias/genética , Proteína-Arginina N-Metiltransferases/genética , Animais , Embrião não Mamífero , Técnicas do Sistema de Duplo-HíbridoRESUMO
Methylosome protein 50 (Mep50) is a protein that is rich in WD40 domains, which mediate and regulate a variety of physiological processes in organisms. Previous studies indicated the necessity of Mep50 in embryogenesis in mice Mus musculus and fish. This study aimed to further understand the roles of maternal Mep50 in early embryogenesis using medaka Oryzias latipes as a model. Without maternal Mep50, medaka zygotes developed to the pre-early gastrula stage but died later. The transcriptome of the embryos at the pre-early gastrula stage was analyzed by RNA sequencing. The results indicated that 1572 genes were significantly upregulated and 741 genes were significantly downregulated in the embryos without maternal Mep50. In the differentially expressed genes (DEGs), the DNA-binding proteins, such as histones and members of the small chromosome maintenance complex, were enriched. The major interfered regulatory networks in the embryos losing maternal Mep50 included DNA replication and cell cycle regulation, AP-1 transcription factors such as Jun and Fos, the Wnt pathway, RNA processing, and the extracellular matrix. Quantitative RT-PCR verified 16 DEGs, including prmt5, H2A, cpsf, jun, mcm4, myc, p21, ccne2, cdk6, and col1, among others. It was speculated that the absence of maternal Mep50 could potentially lead to errors in DNA replication and cell cycle arrest, ultimately resulting in cell apoptosis. This eventually resulted in the failure of gastrulation and embryonic death. The results indicate the importance of maternal Mep50 in early embryonic development, particularly in medaka fish.
Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oryzias , Animais , Oryzias/embriologia , Oryzias/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Embrião não Mamífero/metabolismo , FemininoRESUMO
Methylosome protein 50 (Mep50) functions as a partner to protein arginine methyltransferase 5. MEP50 serves as a coactivator for both the androgen receptor and estrogen receptor in humans. Mep50 plays a crucial role in the development of germ cells in Drosophila. The precise role of Mep50 in oogenesis remains unclear in vertebrates. The objective of this study was to investigate the role of Mep50 in oogenesis in medaka fish. Disruption of Mep50 resulted in impaired oogenesis and the formation of multiple oocyte follicles in medaka. RNA-seq analysis revealed significant differential gene expression in the mutant ovary, with 4542 genes up-regulated and 1264 genes down-regulated. The regulated genes were found to be enriched in cellular matrices and ECM-receptor interaction, the Notch signaling pathway, the PI3K-Akt signaling pathway, the MAPK signaling pathway, the Hippo signaling pathway, and the Jak-Stat pathway, among others. In addition, the genes related to the hypothalamus-pituitary-gonad axis, steroid metabolism, and IGF system were impacted. Furthermore, the mutation of mep50 caused significant alterations in alternative splicing of pre-mRNA in ovarian cells. Quantitative RT-PCR results validated the findings from RNA-seq analysis in the specific genes, including akt2, map3k5, yap1, fshr, cyp17a, igf1, ythdc2, cdk6, and col1, among others. The findings of this study demonstrate that Mep50 plays a crucial role in oogenesis, participating in a diverse range of biological processes such as steroid metabolism, cell matrix regulation, and signal pathways. This may be achieved through the regulation of gene expression via mRNA splicing in medaka ovarian cells.
Assuntos
Proteínas de Peixes , Oogênese , Oryzias , Animais , Oogênese/genética , Oryzias/genética , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Transdução de SinaisRESUMO
Mep50 as a partner promotes the activity and substrate affinity of Prmt5. Prmt5 and Mep50 function together in multiple bioprocesses of the cells. Both Prmt5 and Mep50 are necessary for maintenance of the stem cells and are indispensable in the embryogenesis in the mammals. However, the role of Mep50 is rarely studied in fish. This study was to investigate the role of Mep50 in embryonic development of medaka. Medaka mep50 was mutated by genomic editing with CRISPR-Cas9 technology. Two mutants with a deletion of 22 and 46 bp separately in mep50 caused premature stopping of translation. The homozygotes of these mutant fish were obtained by self-crossing of the heterozygotes. These homozygotic mutants could reproduce embryos but the offspring were not viable. The apoptotic cells were significantly more in the mutant embryos than that in the wild type indicated by TUNEL assay. Quantitative RT-PCR showed that the expression of oct4 and sox2 were significantly decreased, but p53 was increased in the mutant embryos. These results suggest that disruption of mep50 severely interferes with embryogenesis and mep50 is necessary for embryonic development by maintaining stem cells and repression of apoptosis in medaka.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Oryzias , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Oryzias/genética , Oryzias/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Desenvolvimento Embrionário/genética , Mamíferos/metabolismoRESUMO
Breast cancer is composed of distinct subgroups, triple-negative breast cancer (TNBC), human epidermal growth factor receptor-2 (HER2), luminal A, and luminal B, which are associated with different prognosis. MEP50 is the main partner of the arginine methyltransferase PRMT5 required for its enzymatic activity. Here, we examined MEP50 expression in the different breast cancer subgroups from the transcriptomic data obtained on human breast cancer samples and on normal breast tissues in two cohorts (Curie, n = 141; The Cancer Genome Atlas-TCGA, n = 788). We observed higher levels of MEP50 mRNA in TNBC (Curie, n = 41; TCGA, n = 106) compared to the other breast cancer subgroups and normal breast tissues. Using an online KM-plotter database, which allows survival analyses in a larger number of breast cancer patients, we found that high MEP50 mRNA levels were associated with a more favorable recurrence-free survival (RFS) in TNBC (n = 953, p = 1.2 × 10-4) and luminal B (n = 1353, p = 0.013) tumors, whereas high PRMT5 mRNA levels were associated with worse RFS in these two subgroups (TNBC: n = 442, p = 1.0 × 10-4; luminal B: n = 566, p = 6.8 × 10-3). We next determined the expression and the subcellular localization of MEP50 protein by immunohistochemistry (IHC) in our Curie cohort of breast cancer (n = 94) and normal tissues (n = 7) using a validated MEP50 antibody. MEP50 was more expressed in breast tumors compared to normal breast tissues (p = 0.02). MEP50 was more localized to the cytosol in breast cancer cells compared to normal breast tissue (p = 4 × 10-4), and was more found at the plasma membrane in normal tissues compared to breast tumors (p = 0.01). We also evaluated PRMT5 activity by IHC in our Curie cohort using a validated antibody (H4R3me2s) detecting histone H4 symmetrically dimethylated on Arg3. High levels of H4R3me2s were found in normal breast tissues, whereas the lowest levels of H4R3me2s were observed in TNBC and HER2 breast cancer subgroups. Altogether, our study reports the expression of the PRMT5 cofactor (MEP50) and substrate (H4R3me2s) in breast cancer and highlights the association of PRMT5 and MEP50 mRNA with prognosis in luminal B and TNBC breast cancer subgroups and certain TNBC subtypes.
RESUMO
Purinergic signaling plays important roles in bone. P2X5, a member of ligand-gated ion channel receptors, has been demonstrated to regulate osteoclast maturation. However, the molecular mechanism of P2X5-mediated osteoclast regulation remains unclear. Here, we identified methylosome protein 50 (MEP50), a critical cofactor of the protein arginine methyltransferase 5 (PRMT5), as a P2X5-associating molecule. RNAi-mediated knockdown of MEP50 results in decreased formation of mature osteoclasts. MEP50 associates with P2X5, and this association requires the C-terminal intracellular region of P2X5. Additionally, impaired maturation of P2X5-deficient osteoclasts could be restored by transduction of full-length P2X5, but not a C-terminal deletion mutant of P2X5. These results indicate that P2X5 associates with MEP50 and suggest a link between the PRMT5 complex and P2X5 signaling in osteoclast maturation.
Assuntos
Diferenciação Celular , Osteoclastos/metabolismo , Receptores Purinérgicos P2X5/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Osteoclastos/citologia , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores Purinérgicos P2X5/química , Transdução de Sinais , Fatores de Transcrição/genéticaRESUMO
Protein methyl transferases play critical roles in numerous regulatory pathways that underlie cancer development, progression and therapy-response. Here we discuss the function of PRMT5, a member of the nine-member PRMT family, in controlling oncogenic processes including tumor intrinsic, as well as extrinsic microenvironmental signaling pathways. We discuss PRMT5 effect on histone methylation and methylation of regulatory proteins including those involved in RNA splicing, cell cycle, cell death and metabolic signaling. In all, we highlight the importance of PRMT5 regulation and function in cancer, which provide the foundation for therapeutic modalities targeting PRMT5.
RESUMO
BACKGROUND: Prmt5 plays major role in regulation of gene expression, RNA processing, cell growth and differentiation, signal transduction, germ cell development, etc., in mammals. Prmt5 is also related to cancer. Knowing the proteins interacting with Prmt5 is important to understand Prmt5's function in cells. Although there have been reports on proteins binding with Prmt5 in mammals, the partner proteins of Prmt5 in fish are still unclear. OBJECTIVES: The objective was to obtain proteins that bind with Prmt5 in medaka, a model fish. METHODS: Yeast two hybridization was adopted to achieve the objective. Medaka Prmt5 was used as a bait to fish the prey, binding proteins in a cDNA library of medaka. Co-immunoprecipitation and in silicon analysis were performed to study the interaction of medaka Mep50 and Prmt5. RESULTS: Eight proteins were identified to bind with Prmt5 from 69 preliminary positive colonies. The binding proteins are methylosome protein 50 (Mep50), apolipoprotein A-I-like (Apo-AI), PR domain containing protein 1a with zinc fingers (Prdm1a), Prdm1b, T-cell immunoglobulin mucin family member 3 (Tim-3), phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (Paics), NADH dehydrogenase subunit 4 (ND4) and sciellin (Scl). Co-immunoprecipitation confirmed the interaction of medaka Prmt5 and Mep50. Predicted structures of medaka Prtm5 and Mep50 are similar to that of human PRMT5 and MEP50. CONCLUSION: Medaka Mep50, Prdm1a, Prdm1b, Apo-AI, Tim-3, Paics, ND4, and Scl bind with Prmt5.
Assuntos
Proteínas de Peixes , Biblioteca Gênica , Oryzias , Proteína-Arginina N-Metiltransferases , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Oryzias/genética , Oryzias/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismoRESUMO
Lung cancer is one of the most common malignancies. In spite of the progress made in past decades, further studies to improve current therapy for lung cancer are required. Dynamically controlled by methyltransferases and demethylases, methylation of lysine and arginine residues on histone proteins regulates chromatin organization and thereby gene transcription. Aberrant alterations of histone methylation have been demonstrated to be associated with the progress of multiple cancers including lung cancer. Inhibitors of methyltransferases and demethylases have exhibited anti-tumor activities in lung cancer, and multiple lead candidates are under clinical trials. Here, we summarize how histone methylation functions in lung cancer, highlighting most recent progresses in small molecular inhibitors for lung cancer treatment.
RESUMO
Methylosome protein 50 (MEP50) is a component of methylosome where MEP50 binds protein substrates and activates the oncogenic protein arginine methyl transferase 5 (PRMT5). MEP50 is also a coactivator for androgen receptor (AR) and estrogen receptor (ER), and transforms cells in the presence of androgen or estrogen. To extend the understanding of how MEP50 transforms cells, we investigated whether MEP50 could transform cells independent of AR and ER, and clarified whether PRMT5 could contribute to the MEP50-caused tumor formation. Microarray and Western blot analyses revealed the association of MEP50 with many human cancers including lung cancer. Knockdown of MEP50 retarded cell growth and migration in selected lung cancer cell lines, which expressed very low level of AR and ER and were insensitive to inhibitors of AR and ER. Moreover, overexpression of Myc-MEP50 enhanced cell transforming activities of 293T cells which are known lack of expression of AR and ER. Mechanistic analyses showed that MEP50 controlled G2 progression, upregulated cyclin-dependent kinase 1(CDK1)/cyclin B1, and activated the survival cascade Phosphoinositide 3-kinase (PI3K)/AKT. MEP50 promoted cell migration, and activated the cell migration pathways such as Ras-related C3 botulinum toxin substrate 1 (Rac1)/vasodilator-stimulated phosphoprotein (VASP), and forkhead box protein A2 (FOXA2)/slug/cadherin cascades. Further analyses revealed that MEP50 activated the survival factor PI3K through PRMT5-catalyzed dimethylation of PI3K. Collectively, it is concluded that MEP50 can transform cells independent of AR and ER, and PRMT5 has partial contribution to that process.