Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774131

RESUMO

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Assuntos
Metiltransferases/metabolismo , RNA Mitocondrial/química , RNA de Transferência/química , Animais , Anticódon , Proliferação de Células , Códon , Citoplasma , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais , Proteínas Mitocondriais/química , Consumo de Oxigênio , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Ribossomos/metabolismo , Regulação para Cima
2.
J Biol Chem ; 298(4): 101788, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247384

RESUMO

A subset of eukaryotic tRNAs is methylated in the anticodon loop, forming 3-methylcytosine (m3C) modifications. In mammals, the number of tRNAs containing m3C modifications has been expanded to include mitochondrial (mt) tRNA-Ser-UGA and mt-tRNA-Thr-UGU. However, whereas the enzymes catalyzing m3C formation in nuclear-encoded tRNAs have been identified, the proteins responsible for m3C modification in mt-tRNAs are unknown. Here, we show that m3C formation in human mt-tRNAs is dependent upon the methyltransferase-Like 8 (METTL8) enzyme. We find that METTL8 is a mitochondria-associated protein that interacts with mitochondrial seryl-tRNA synthetase, as well as with mt-tRNAs containing m3C. We demonstrate that human cells deficient in METTL8 exhibit loss of m3C modification in mt-tRNAs, but not nuclear-encoded tRNAs. Consistent with the mitochondrial import of METTL8, the formation of m3C in METTL8-deficient cells could be rescued by re-expression of WT METTL8, but not by a METTL8 variant lacking the N-terminal mitochondrial localization signal. Notably, we found METTL8-deficiency in human cells causes alterations in the native migration pattern of mt-tRNA-Ser-UGA, suggesting a role for m3C in tRNA folding. Altogether, these findings demonstrate that METTL8 is required for m3C formation in mt-tRNAs and uncover a potential function for m3C modification in mitochondrial tRNA structure.


Assuntos
Anticódon , Metiltransferases , RNA de Transferência , Anticódon/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
J Transl Med ; 20(1): 476, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266694

RESUMO

RNA methylation modifications, especially m6A mRNA modification, are known to be extensively involved in tumor development. However, the relationship between N3-methylcytidine (m3C) related genes and tumorigenesis has rarely been studied. In this research, we found that m3C-related genes were expressed at different levels and affected patients' prognosis across multiple cancer types from The Cancer Genome Atlas and multi-omics levels. Importantly, methyltransferase-like proteins 2A (METTL2A) had a high amplification frequency (~ 7%) in patients with breast invasive carcinoma (BRCA), and its overexpression was an independent predictor of poor overall survival. Enrichment analysis of associated genes revealed that METTL2A may activate DNA synthesis and cell proliferation pathways in BRCA cells. Through drug sensitivity analysis, Trifluridine, PD407824, and Taselisib were shown to be effective drugs for METTL2A-positive BRCA patients. Overall, our research conducts a holistic view of the expression level and prognostic signature of m3C-related genes with multiple malignancies. Importantly, METTL2A has been intensely explored as a potential oncogene in BRCA, to aid the development of potential drug agents for precision therapy in breast cancer patients.


Assuntos
Neoplasias da Mama , tRNA Metiltransferases , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA , Oncogenes/genética , RNA , RNA Mensageiro/química , Trifluridina , tRNA Metiltransferases/genética
4.
J Biol Chem ; 292(35): 14695-14703, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655767

RESUMO

Chemical RNA modifications are central features of epitranscriptomics, highlighted by the discovery of modified ribonucleosides in mRNA and exemplified by the critical roles of RNA modifications in normal physiology and disease. Despite a resurgent interest in these modifications, the biochemistry of 3-methylcytidine (m3C) formation in mammalian RNAs is still poorly understood. However, the recent discovery of trm141 as the second gene responsible for m3C presence in RNA in fission yeast raises the possibility that multiple enzymes are involved in m3C formation in mammals as well. Here, we report the discovery and characterization of three distinct m3C-contributing enzymes in mice and humans. We found that methyltransferase-like (METTL) 2 and 6 contribute m3C in specific tRNAs and that METTL8 only contributes m3C to mRNA. MS analysis revealed that there is an ∼30-40% and ∼10-15% reduction, respectively, in METTL2 and -6 null-mutant cells, of m3C in total tRNA, and primer extension analysis located METTL2-modified m3C at position 32 of tRNAThr isoacceptors and tRNAArg(CCU) We also noted that METTL6 interacts with seryl-tRNA synthetase in an RNA-dependent manner, suggesting a role for METTL6 in modifying serine tRNA isoacceptors. METTL8, however, modified only mRNA, as determined by biochemical and genetic analyses in Mettl8 null-mutant mice and two human METTL8 mutant cell lines. Our findings provide the first evidence of the existence of m3C modification in mRNA, and the discovery of METTL8 as an mRNA m3C writer enzyme opens the door to future studies of other m3C epitranscriptomic reader and eraser functions.


Assuntos
Citidina/análogos & derivados , Fígado/metabolismo , Metiltransferases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Animais , Linhagem Celular , Citidina/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/enzimologia , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Mutação , Interferência de RNA , RNA de Transferência de Arginina/metabolismo , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Especificidade por Substrato
5.
Cell Stem Cell ; 30(3): 300-311.e11, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764294

RESUMO

Increasing evidence implicates the critical roles of various epitranscriptomic RNA modifications in different biological processes. Methyltransferase METTL8 installs 3-methylcytosine (m3C) modification of mitochondrial tRNAs in vitro; however, its role in intact biological systems is unknown. Here, we show that Mettl8 is localized in mitochondria and installs m3C specifically on mitochondrial tRNAThr/Ser(UCN) in mouse embryonic cortical neural stem cells. At molecular and cellular levels, Mettl8 deletion in cortical neural stem cells leads to reduced mitochondrial protein translation and attenuated respiration activity. At the functional level, conditional Mettl8 deletion in mice results in impaired embryonic cortical neural stem cell maintenance in vivo, which can be rescued by pharmacologically enhancing mitochondrial functions. Similarly, METTL8 promotes mitochondrial protein expression and neural stem cell maintenance in human forebrain cortical organoids. Together, our study reveals a conserved epitranscriptomic mechanism of Mettl8 and mitochondrial tRNA m3C modification in maintaining embryonic cortical neural stem cells in mice and humans.


Assuntos
Metiltransferases , Mitocôndrias , Camundongos , Animais , Humanos , Mitocôndrias/metabolismo , Metiltransferases/genética , RNA de Transferência/metabolismo , Neurogênese , Proteínas Mitocondriais/metabolismo
6.
Front Genet ; 13: 820464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281804

RESUMO

Skeletal muscle, the main source of animal meat products, contains muscle fiber as a key unit. It is well known that transformation takes place between different types of muscle fibers, however, the conversion mechanism is not clear. In a previous study, our lab has demonstrated that there is a decrease in type I muscle fibers and an increase in type IIB muscle fibers in skeletal muscle of myostatin gene-edited Meishan pigs. Very interestingly, we observed the down regulation of miR-208b expression and an increase in expression the predicted target gene Mettl8 (Methyltransferase like 8) in skeletal muscle of MSTN gene-edited Meishan pigs. These results reveal that there is a potential connection between the conversion of skeletal muscle fiber types and miR-208b and Mettl8 expression. In this study, we first explored the expression patterns of miR-208b and Mettl8 in skeletal muscle in Meishan pigs; and then C2C12 cells were used to simulate the development and maturation of muscle fibers. Our results indicated that Myh4 expression level decreased and Myh7 expression level increased following overexpression of miR-208b in C2C12 cells. We therefore speculate that miR-208b can promote the conversion of fast-twitch fibers to slow-twitch fibers. The targeting relationship between Mettl8 and miR-208b was confirmed by results obtained using dual luciferase assay, RT-qPCR, and WB analysis. Following the transfection of Mettl8 siRNA into C2C12 cells, we observed that Mettl8 expression decreased significantly while Myh7 expression increased and Myh4 expression decreased, indicating that Mettl8 promotes the conversion of slow muscle fibers to fast muscle fibers. Additionally, changes in skeletal muscle fiber types are observed in those mice where miR-208b and Mettl8 genes are knocked out. The miR-208b knockout inhibits the formation of slow muscle fibers, and the Mettl8 knockout inhibits the formation of fast muscle fibers. In conclusion, our research results show that miR-208b regulates the conversion of different muscle fiber types by inhibiting Mettl8 expression.

7.
Front Cell Dev Biol ; 9: 606106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816462

RESUMO

Lung squamous cell carcinoma (LSCC) is one of the most common types of lung cancer in adults worldwide. With the development of modern medicine, cancer treatment that harnesses the power of the immune system might be particularly effective for treating LSCC. In this research, LSCC expression data, which quantify the cellular composition of immune cells, were analyzed by weighted gene coexpression network analysis (WGCNA) and a deconvolution algorithm based on the Gene Expression Omnibus (GEO) database, and the results indicated a close relationship between LSCC and CD8+ T cells. Six hub genes (SYT3, METTL8, HSPB3, GFM1, ERLIN2, and CLCN2) were verified by gene-gene network and protein-protein interaction (PPI) network analyses. We found that the six hub genes were increased in cancer tissues and were closely correlated with cancer development and progression. After immune correlation analysis, METTL8 was selected as a prognostic biomarker. Finally, we found that the METTL8 levels were increased in multiple lung cancer cell lines and LSCC tissues. METTL8 inhibition could clearly induce G1 cell cycle arrest and suppress proliferation. Therefore, METTL8, which is related to CD8+ T cell infiltration, might be identified as a potential biomarker and gene therapy target in LSCC.

8.
Stem Cell Reports ; 10(6): 1807-1820, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29706498

RESUMO

The capacity of embryonic stem cells (ESCs) to differentiate into all lineages of mature organism is precisely regulated by cellular signaling factors. STAT3 is a crucial transcription factor that plays a central role in maintaining ESC identity. However, the underlying mechanism by which STAT3 directs differentiation is still not completely understood. Here, we show that STAT3 positively regulates gene expression of methyltransferase-like protein 8 (Mettl8) in mouse ESCs. We found that METTL8 is dispensable for pluripotency but affects ESC differentiation. Subsequently, we discovered that METTL8 interacts with Mapkbp1's mRNA, which is an intermediate factor in c-Jun N-terminal kinase (JNK) signaling, and inhibits the translation of the mRNA. Thereby, METTL8 prohibits the activation of JNK signaling and enhances the differentiation of mouse ESCs. Collectively, our study uncovers a STAT3 target, Mettl8, which regulates mouse ESC differentiation via JNK signaling.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Sistema de Sinalização das MAP Quinases , Metiltransferases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA