Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.849
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35051368

RESUMO

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Magnésio/metabolismo , Animais , Infecções Bacterianas/imunologia , Restrição Calórica , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células HEK293 , Humanos , Memória Imunológica , Sinapses Imunológicas/metabolismo , Imunoterapia , Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases , Magnésio/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo
2.
Genes Dev ; 35(13-14): 1020-1034, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168041

RESUMO

During mitosis, chromatin condensation is accompanied by a global arrest of transcription. Recent studies suggest transcriptional reactivation upon mitotic exit occurs in temporally coordinated waves, but the underlying regulatory principles have yet to be elucidated. In particular, the contribution of sequence-specific transcription factors (TFs) remains poorly understood. Here we report that Brn2, an important regulator of neural stem cell identity, associates with condensed chromatin throughout cell division, as assessed by live-cell imaging of proliferating neural stem cells. In contrast, the neuronal fate determinant Ascl1 dissociates from mitotic chromosomes. ChIP-seq analysis reveals that Brn2 mitotic chromosome binding does not result in sequence-specific interactions prior to mitotic exit, relying mostly on electrostatic forces. Nevertheless, surveying active transcription using single-molecule RNA-FISH against immature transcripts reveals differential reactivation kinetics for key targets of Brn2 and Ascl1, with transcription onset detected in early (anaphase) versus late (early G1) phases, respectively. Moreover, by using a mitotic-specific dominant-negative approach, we show that competing with Brn2 binding during mitotic exit reduces the transcription of its target gene Nestin Our study shows an important role for differential binding of TFs to mitotic chromosomes, governed by their electrostatic properties, in defining the temporal order of transcriptional reactivation during mitosis-to-G1 transition.


Assuntos
Mitose , Células-Tronco Neurais , Cromatina , Cromossomos/metabolismo , Mitose/genética , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo
3.
Annu Rev Microbiol ; 75: 649-672, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623895

RESUMO

Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.


Assuntos
Ribossomos , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
4.
Genes Dev ; 32(1): 79-92, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437726

RESUMO

Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium, this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg2+), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg2+ promotes an uptake in Mg2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos/metabolismo , Biossíntese de Proteínas , Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Homeostase , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transcrição Gênica
5.
Dev Biol ; 509: 59-69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373693

RESUMO

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Tamanho Corporal/genética
6.
J Biol Chem ; 300(8): 107561, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002674

RESUMO

Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short ß-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.

7.
Proc Natl Acad Sci U S A ; 119(16): e2120177119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412906

RESUMO

During the process of biomineralization, organisms utilize various biostrategies to enhance the mechanical durability of their skeletons. In this work, we establish that the presence of high-Mg nanoparticles embedded within lower-Mg calcite matrices is a widespread strategy utilized by various organisms from different kingdoms and phyla to improve the mechanical properties of their high-Mg calcite skeletons. We show that such phase separation and the formation of high-Mg nanoparticles are most probably achieved through spinodal decomposition of an amorphous Mg-calcite precursor. Such decomposition is independent of the biological characteristics of the studied organisms belonging to different phyla and even kingdoms but rather, originates from their similar chemical composition and a specific Mg content within their skeletons, which generally ranges from 14 to 48 mol % of Mg. We show evidence of high-Mg calcite nanoparticles in the cases of six biologically different organisms all demonstrating more than 14 mol % Mg-calcite and consider it likely that this phenomenon is immeasurably more prevalent in nature. We also establish the absence of these high-Mg nanoparticles in organisms whose Mg content is lower than 14 mol %, providing further evidence that whether or not spinodal decomposition of an amorphous Mg-calcite precursor takes place is determined by the amount of Mg it contains. The valuable knowledge gained from this biostrategy significantly impacts the understanding of how biominerals, although composed of intrinsically brittle materials, can effectively resist fracture. Moreover, our theoretical calculations clearly suggest that formation of Mg-rich nanoprecipitates greatly enhances the hardness of the biomineralized tissue as well.


Assuntos
Biomineralização , Carbonato de Cálcio , Magnésio , Nanopartículas , Esqueleto , Animais , Carbonato de Cálcio/química , Cristalização , Magnésio/química , Nanopartículas/química , Esqueleto/química
8.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416582

RESUMO

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

9.
Nano Lett ; 24(19): 5920-5928, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708934

RESUMO

A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.

10.
J Biol Chem ; 299(9): 105143, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562567

RESUMO

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Assuntos
Processamento Alternativo , Encéfalo , Miosina não Muscular Tipo IIA , Humanos , Actinas/metabolismo , Encéfalo/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ritmo Circadiano , ATPase de Ca(2+) e Mg(2+)/metabolismo , Especificidade de Órgãos
11.
Curr Issues Mol Biol ; 46(8): 8197-8208, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39194701

RESUMO

Multiple myeloma (MM) first-line treatment algorithms include immuno-chemotherapy (ICT) induction, high-dose chemotherapy (HDCT) and autologous stem cell transplant (ASCT) consolidation, followed by lenalidomide maintenance. After these initial therapies, most patients suffer a disease relapse and require subsequent treatment lines including ICT, additional HDCT and ASCT, or novel immunotherapies. The presence of somatic mutations in peripheral blood cells has been associated with adverse outcomes in a variety of hematological malignancies. Nonsense and frameshift mutations in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to the gain-of-function of Wip1 phosphatase, which may impair the p53-dependent G1 checkpoint and promote cell proliferation. Here, we determined the presence of PPM1D gene mutations in peripheral blood cells of 75 subsequent myeloma patients in remission after first or second HDCT/ASCT. The prevalence of truncating PPM1D gene mutations emerged at 1.3% after first HDCT/ASCT, and 7.3% after second HDCT/ASCT, with variant allele frequencies (VAF) of 0.01 to 0.05. Clinical outcomes were inferior in the PPM1D-mutated (PPM1Dmut) subset with median progression-free survival (PFS) of 15 vs. 37 months (p = 0.0002) and median overall survival (OS) of 36 vs. 156 months (p = 0.001) for the PPM1Dmut and PPM1Dwt population, respectively. Our data suggest that the occurrence of PPM1D gene mutations in peripheral blood cells correlates with inferior outcomes after ASCT in patients with multiple myeloma.

12.
Biochem Biophys Res Commun ; 723: 150166, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38810321

RESUMO

CorA is a Mg2+ channel that plays a key role in the homeostasis of intracellular Mg2+ in bacteria and archaea. CorA consists of a cytoplasmic domain and a transmembrane domain and generates a Mg2+ pathway by forming a pentamer in the cell membrane. CorA gating is regulated via negative feedback by Mg2+, which is accommodated by the pentamerization interface of the CorA cytoplasmic domain (CorACD). The Mg2+-binding sites of CorACD differ depending on the species, suggesting that the Mg2+-binding modes and Mg2+-mediated gating mechanisms of CorA vary across prokaryotes. To define the Mg2+-binding mechanism of CorA in the Campylobacter jejuni pathogen, we structurally and biochemically characterized C. jejuni CorACD (cjCorACD). cjCorACD adopts a three-layered α/ß/α structure as observed in other CorA orthologs. Interestingly, cjCorACD exhibited enhanced thermostability in the presence of Ca2+, Ni2+, Zn2+, or Mn2+ in addition to Mg2+, indicating that cjCorACD interacts with diverse divalent cations. This cjCorACD stabilization is mediated by divalent cation accommodation by negatively charged residues located at the bottom of the cjCorACD structure away from the pentamerization interface. Consistently, cjCorACD exists as a monomer irrespective of the presence of divalent cations. We concluded that cjCorACD binds divalent cations in a unique pentamerization-independent manner.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Cátions Bivalentes , Magnésio , Campylobacter jejuni/metabolismo , Campylobacter jejuni/química , Cátions Bivalentes/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Magnésio/metabolismo , Magnésio/química , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Domínios Proteicos , Cristalografia por Raios X , Estabilidade Proteica
13.
BMC Plant Biol ; 24(1): 579, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890571

RESUMO

BACKGROUND: The quality of maize kernels is significantly enhanced by amino acids, which are the fundamental building blocks of proteins. Meanwhile, calcium (Ca) and magnesium (Mg), as important nutrients for maize growth, are vital in regulating the metabolic pathways and enzyme activities of amino acid synthesis. Therefore, our study analyzed the response process and changes of amino acid content, endogenous hormone content, and antioxidant enzyme activity in kernels to the coupling addition of sugar alcohol-chelated Ca and Mg fertilizers with spraying on maize. RESULT: (1) The coupled addition of Ca and Mg fertilizers increased the Ca and Mg content, endogenous hormone components (indole-3-acetic acid, IAA; gibberellin, GA; zeatin riboside, ZR) content, antioxidant enzyme activity, and amino acid content of maize kernels. The content of Ca and Mg in kernels increased with the increasing levels of Ca and Mg fertilizers within a certain range from the filling to the wax ripening stage, and significantly positively correlated with antioxidant enzyme activities. (2) The contents of IAA, GA, and ZR continued to rise, and the activities of superoxide dismutase (SOD) and catalase (CAT) were elevated, which effectively enhanced the ability of cells to resist oxidative damage, promoted cell elongation and division, and facilitated the growth and development of maize. However, the malondialdehyde (MDA) content increased consistently, which would attack the defense system of the cell membrane plasma to some extent. (3) Leucine (LEU) exhibited the highest percentage of essential amino acid components and a gradual decline from the filling to the wax ripening stage, with the most substantial beneficial effect on essential amino acids. (4) CAT and SOD favorably governed essential amino acids, while IAA and MDA negatively regulated them. The dominant physiological driving pathway for the synthesis of essential amino acids was "IAA-CAT-LEU", in which IAA first negatively drove CAT activity, and CAT then advantageously controlled LEU synthesis. CONCLUSION: These findings provide a potential approach to the physiological and biochemical metabolism of amino acid synthesis, and the nutritional quality enhancement of maize kernel.


Assuntos
Aminoácidos , Cálcio , Magnésio , Reguladores de Crescimento de Plantas , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Magnésio/metabolismo , Aminoácidos/metabolismo , Cálcio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fertilizantes , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Giberelinas/metabolismo
14.
Small ; 20(24): e2308886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174607

RESUMO

Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2O5 (≈200 nm) is demonstrated by a thin layer of VS2 (≈12 nm) through a facile surface reduction route. The VS2 layer protects the surface of V2O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2O5 and V2O5@VS2 particles demonstrate high initial discharge capacity. However, only the V2O5@VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138 mA h g-1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2O5.

15.
Small ; : e2402982, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011738

RESUMO

The synergies of nanoconfinement and catalysis is an effective strategy to improve the kinetic and thermodynamic properties of Mg-based materials. However, obtaining Mg-based materials with high loading, anti-aggregation, and containing nanocatalysts to achieve dehydrogenation at room temperature remains a huge challenge. Herein, a novel and universal preparation strategy for Mg-Co@C nanocomposites with 9.5 nm Mg nanoparticles and 9.4 nm Co nanocatalysts embedded in carbon scaffold is reported. The 9.3 nm MgBu2 nanosheets precipitated by solvent displacement are encapsulated in ZIF-67 to prepare MgBu2@ZIF-67 precursors, then removing excess MgBu2 on the precursor surface and pyrolysis to obtain Mg-Co@C. It is worth noting that the Mg loading rate of Mg-Co@C is as high as rare 69.7%. Excitingly, the Mg-Co@C begins to dehydrogenate at room temperature with saturate capacity of 5.1 wt.%. Meanwhile, its dehydrogenation activation energy (Ea(des) = 68.8 kJ mol-1) and enthalpy (ΔH(des) = 61.6 kJ mol-1) significantly decrease compared to bulk Mg. First principles calculations indicate that the hydrogen adsorption energy on the Mg2CoH5 surface is only -0.681 eV. This work provides a universally applicable novel method for the preparation of nanoscale Mg-based materials with various nanocatalysts added, and provides new ideas for Mg-based materials to achieve room temperature hydrogen storage.

16.
Small ; 20(11): e2307396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888791

RESUMO

Rechargeable magnesium batteries (RMBs) are considered as one of the most promising candidates for next-generation batteries. However, the popularization of RMBs is seriously plagued due to the lack of suitable non-nucleophilic electrolytes and the passivation of Mg anode. Herein, a novel non-nucleophilic electrolyte is developed by introducing (s)-1-methoxy-2-propylamine (M4) into themagnesium aluminum chloride complex (MACC)-like electrolyte. The as-synthesizes Mg(AlCl4 )2 -IL-DME-M4 electrolyte enables robust reversible cycling of Mg plating/stripping with low overpotential, high anodic stability, and ionic conductivity (8.56 mS cm-1 ). These features should be mainly attributed to the in situ formation of an MgF2 containing Mg2+ -conducting interphase, which dramatically suppresses the passivation and parasitic reaction of Mg anode with electrolyte. Remarkably, the Mg/S batteries assemble with as-synthesize electrolyte and a new type MoS2 @CMK/S cathode deliver unprecedented electrochemical performance. Specifically, the Mg/S battery exhibited the highest reversible capacity up to 1210 mAh g-1 at 0.1 C, excellent rate capability and satisfactory long-term cycling stability with a reversible capacity of 370 mAh g-1 (coulombic efficiency of ≈100%) at 1.0 C for 600 cycles. The study findings provide a novel strategy and inspiration for designing efficient non-nucleophilic Mg electrolyte and suitable sulfur-host materials for practical Mg/S battery applications.

17.
Small ; 20(8): e2305690, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840406

RESUMO

A Mg-cell with P2-Na2/3 Ni1/3 Mn2/3 O2 layered oxide cathode provides novel reaction mechanism not observed in Na-cells. The sodium/vacancy ordering and Jahn-Teller effects are suppressed with the insertion of magnesium ion. The Mg-cell exhibits different features when operating between 4.5 and 0.15 V and 3.9 and 0.15 V versus Mg2+ /Mg. To analyze the structural and chemical changes during Mg insertion, the cathode is first charged to obtain the Na1/3 Ni1/3 Mn2/3 O2 compound, which is formally accompanied by an oxidation from Ni2+ to Ni3+ . As structure models Mg1/6 Na1/3 Ni1/3 Mn2/3 O2 and Mg1/12 Na1/2 Ni1/3 Mn2/3 O2 are utilized with a large 2 3 a $2\sqrt 3 a$ × 2 3 a $2\sqrt 3 a$ supercell. On discharge, the Mg-cell exhibits a multistep profile which reaches ≈100 mA h g-1 with the valence change from Ni3+ to Ni2+ . Such profile is quite different from its sodium counterpart (230 mA h g-1 ) which exhibits the sodium/vacancy ordering and deleterious presence of Mn3+ . Depending on how the two interlayer spacings are filled by Na and Mg the "staged," "intermediated," and "average" models are analyzed for Mgy Na8 Ni8 Mn16 O48 supercell. This fact suggests differences in the cell performance when Mg is used as counter electrode providing some tips to improve the structure engineering on cathode materials.

18.
Small ; 20(28): e2311478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396159

RESUMO

Mg3Sb2-based alloys are attracting increasing attention due to the excellent room temperature thermoelectric properties. However, due to the presence and easy segregation of charged Mg vacancies, the carrier mobility in Mg3Sb2-based alloys is always severely compromised that significantly restricts the room temperature performance. General vacancy compensation strategies cannot synergistically optimize the complicated Mg3Sb2 structures involving both interior and boundary scattering. Herein, due to the multi-functional doping effect of Nb, the electron scattering inside and across grains is significantly suppressed by inhibiting the accumulation of Mg vacancies, and leading to a smooth transmission channel of electrons. The increased Mg vacancies migration barrier and optimized interface potential are also confirmed theoretically and experimentally, respectively. As a result, a leading room temperature zT of 1.02 is achieved. This work reveals the multi-functional doping effect as an efficient approach in improving room temperature thermoelectric performance in complicated defect/interface associated Mg3Sb2-based alloys.

19.
Small ; 20(6): e2304969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771192

RESUMO

Magnesium-ion batteries are widely studied for its environmentally friendly, low-cost, and high volumetric energy density. In this work, the solvothermal method is used to prepare titanium dioxide bronze (TiO2 -B) nanoflowers with different nickel (Ni) doping concentrations for use in magnesium ion batteries as cathode materials. As Ni doping enhances the electrical conductivity of TiO2 -B and promotes magnesium ion diffusion, the band gap of TiO2 -B host material can be significantly reduced, and as Ni content increases, diffusion contributes more to capacity. According to the electrochemical test, TiO2 -B exhibits excellent electrochemical performance when the Ni element doping content is 2 at% and it is coated with reduced graphene oxide@carbon nanotube (RGO@CNT). At a current density of 100 mA g-1 , NT-2/RGO@CNT discharge specific capacity is as high as 167.5 mAh g-1 , which is 2.36 times of the specific discharge capacity of pure TiO2 -B. It is a very valuable research material for magnesium ion battery cathode materials.

20.
Small ; 20(2): e2305670, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658521

RESUMO

N-type Mg3 Sb2 -based thermoelectric materials show great promise in power generation due to their mechanical robustness, low cost of Mg, and high figure of merit (ZT) over a wide range of temperatures. However, their poor thermal stability hinders their practical applications. Here, MgB2 is introduced to improve the thermal stability of n-type Mg3 Sb2 . Enabled by MgB2 decomposition, extra Mg can be released into the matrix for Mg compensation thermodynamically, and secondary phases of Mg─B compounds can kinetically prevent Mg diffusion along grain boundaries. These synergetic effects inhibit the formation of Mg vacancies at elevated temperatures, thereby enhancing the thermal stability of n-type Mg3 Sb2 . Consequently, the Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 (MgB2 )0.03 sample exhibits negligible variation in thermoelectric performance during the 120-hour continuous measurement at 673 K. Moreover, the ZT of n-type Mg3 Sb2 can be maintained by adding MgB2 , reaching a high average ZT of ≈1.1 within 300-723 K. An eight-pair Mg3 Sb2 -GeTe-based thermoelectric device is also fabricated, achieving an energy conversion efficiency of ≈5.7% at a temperature difference of 438 K with good thermal stability. This work paves a new way to enhance the long-term thermal stability of n-type Mg3 Sb2 -based alloys and other thermoelectrics for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA