Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nano Lett ; 24(23): 6931-6938, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804717

RESUMO

Spin-orbit torque magnetic random access memory (SOT-MRAM) has great promise in high write speed and low power consumption. Mo can play a vital role in constructing a CoFeB/MgO-based MRAM cell because of its ability to enhance the perpendicular magnetic anisotropy (PMA), thermal tolerance, and tunneling magnetoresistance. However, Mo is often considered as a less favorable candidate among SOT materials because of its weak spin-orbit coupling. In this study, we experimentally investigate the SOT efficiencies in Mo/CoFeB/MgO heterostructures over a wide range of Mo thicknesses and temperature. Decent damping-like SOT efficiency |ξDL| = 0.015 ± 0.001 and field-like SOT efficiency |ξFL| = 0.050 ± 0.001 are found in amorphous Mo. The ξFL/ξDL ratio is greater than 3. Furthermore, efficient current-induced magnetization switching is demonstrated with the critical current density comparable with heavy metal Ir and W. Our work reveals new understanding and possibilities for Mo as both an SOT source component and PMA buffer layer in the implementation of SOT-MRAMs.

2.
Nano Lett ; 23(12): 5482-5489, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37295781

RESUMO

Current-induced spin-orbit torques (SOTs) enable fast and efficient manipulation of the magnetic state of magnetic tunnel junctions (MTJs), making them attractive for memory, in-memory computing, and logic applications. However, the requirement of the external magnetic field to achieve deterministic switching in perpendicularly magnetized SOT-MTJs limits its implementation for practical applications. Here, we introduce a field-free switching (FFS) solution for the SOT-MTJ device by shaping the SOT channel to create a "bend" in the SOT current. The resulting bend in the charge current creates a spatially nonuniform spin current, which translates into inhomogeneous SOT on an adjacent magnetic free layer enabling deterministic switching. We demonstrate FFS experimentally on scaled SOT-MTJs at nanosecond time scales. This proposed scheme is scalable, material-agnostic, and readily compatible with wafer-scale manufacturing, thus creating a pathway for developing purely current-driven SOT systems.

3.
Nanotechnology ; 34(49)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37669644

RESUMO

Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips.

4.
Nano Lett ; 22(10): 4000-4005, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576455

RESUMO

Perpendicular shape anisotropy (PSA) offers a practical solution to downscale spin-transfer torque magnetoresistive random-access memory (STT-MRAM) beyond the sub-20 nm technology node while retaining thermal stability. However, our understanding of the thermomagnetic behavior of PSA-STT-MRAM is often indirect, relying on magnetoresistance measurements and micromagnetic modeling. Here, the magnetism of a NiFe PSA-STT-MRAM nanopillar is investigated using off-axis electron holography, providing spatially resolved magnetic information as a function of temperature. Magnetic induction maps reveal the micromagnetic configuration of the NiFe storage layer (∼60 nm high, ≤20 nm diameter), confirming the PSA induced by its 3:1 aspect ratio. In situ heating demonstrates that the PSA of the storage layer is maintained up to at least 250 °C, and direct quantitative measurements reveal a moderate decrease of magnetic induction. Hence, this study shows explicitly that PSA provides significant stability in STT-MRAM applications that require reliable performance over a range of operating temperatures.

5.
Nanotechnology ; 33(2)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34614479

RESUMO

A new writing scheme with a unidirectional pulse current is proposed for spin transfer torque (STT) based magnetic random-access memory (MRAM). To investigate the feasibility of the writing scheme, bilayered nano-pillars composed of a soft layer with small in-plane shape anisotropy and a hard layer with either large perpendicular anisotropy (PMA) or in-plane anisotropy (IMA) are designed and their switching behaviors are studied. It is found that in either type of bilayered nano-pillars, with the aid of the attached hard layer, the magnetization of the soft layer can be switched back and forth under a unidirectional pulse current. In an IMA/IMA nano-pillar, the magnetization of the free layer (FL) can achieve excellent alignment, which is in contrast to the IMA/PMA nano-pillar. By optimizing the dimensions and magnetic parameters of the IMA/IMA nano-pillar, a decently low switching current density (4.3 × 1011A m-2) and ultrashort switching time (<1 ns) can be reached. Based on these results, the unidirectional writing scheme is practical if an IMA/IMA bilayer is used to replace the FL in a magnetic tunnel junction. Considering that a unidirectional writing scheme can enable the application of materials with high spin polarization such as half metals, and avoid the injection of writing current into junction using a special design, it may be very promising for STT-MRAM.

6.
Nanotechnology ; 32(49)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34438388

RESUMO

The heterostructures with high perpendicular magnetic anisotropy (PMA) have advantages for the application of the nonvolatile memories with long data retention time and small size. The interface structure and magnetic anisotropy energy (MAE) of Co2FeAl/MgAl2O4heterostructures were studied by first principles calculations. The stable interface atomic arrangement is the Co or FeAl layer located above the equatorial oxygen coordinate in the distorted oxygen octahedrons. The Co-O interface can induce large effective PMA up to 4.54 mJ m-2, but this structure is a metastable structure. Meanwhile, the effective MAE decreases linearly as the thickness of the ferromagnetic layer increase. The effective MAE for the FeAl-O interface is only 1.3 mJ m-2, while the maximum thickness of Co2FeAl layer that maintains the PMA effect is about 1.717 nm. These values are very close to the experimental results. Throughd-orbital-resolved MAE, we confirm that the interface PMA is mainly originated from the hybridization betweendxy,dyzanddz2orbitals of interface 3datoms. In addition, the compressive strain, negative electric field and hole doping can significantly enhance the effective PMA of FeAl-O interface. At the same time, Co-O interface will become the most stable structure by tuning the Mg/Al ratio in the spinel layers. The large effective PMA makes the Co2FeAl/MgAl2O4junction a perfect candidate for the next-generation of non-volatile spintronic devices.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33654328

RESUMO

Materials such as L10 Fe-based alloys with perpendicular magnetic anisotropy derived from crystal structure have the potential to deliver higher thermal stability of magnetic memory elements compared to materials whose anisotropy is derived from surfaces and interfaces. A number of processing parameters enable control of the quality and texture of L10 FePd among them, including substrate, deposition temperature, pressure and seed and buffer layer. The angle of inclination between the substrate and the sputtering target can also impact the texture of L10 crystallization of sputtered Fe-Pd and magnetic properties of the derived thin films. This study examines the difference between FePd layers that have been magnetron sputter deposited on Cr(15 nm)/Pt, Ir, or Ru(4 nm)/FePd (8 nm)/Ru(2 nm)/Ta(3 nm) substrate layers at an oblique angle (30° tilt from the sputtering target) versus normal incidence (target facing the substrate). X-ray diffraction, ferromagnetic resonance spectroscopy and vibrating sample magnetometry were used to compare the degree of L10 order and static and dynamic properties of films deposited under both conditions. The films grown using the oblique orientation exhibit a stronger degree of L10 orientation, a larger magnetic anisotropy energy and a lower Gilbert damping, on all three buffer layers.

8.
Nano Lett ; 18(7): 4074-4080, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29905078

RESUMO

Three-terminal spintronic memory devices based on the controlled manipulation of the proximate magnetization of a magnetic nanoelement using spin-orbit torques (SOTs) have attracted growing interest recently. These devices are nonvolatile, can operate at high speeds with low error rates, and have essentially infinite endurance, making them promising candidates for high-speed cache memory. Typically, the magnetization and spin polarization in these devices are collinear to one another, leading to a finite incubation time associated with the switching process. While switching can also be achieved when the magnetization easy axis and spin polarization are noncollinear, this requires the application of an external magnetic field for deterministic switching. Here, we demonstrate a novel SOT scheme that exploits non-uniform micromagnetic states to achieve deterministic switching when the spin polarization and magnetic moment axis are noncollinear to one another in the absence of external magnetic field. We also explore the use of a highly efficient SOT generator, oxygen-doped tungsten in the three-terminal device geometry, confirming its -50% spin Hall angle. Lastly, we illustrate how this scheme may potentially be useful for nanomagnetic logic applications.

9.
Proc Natl Acad Sci U S A ; 112(21): 6585-90, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25971730

RESUMO

Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe.

10.
Nano Lett ; 16(10): 5987-5992, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27327619

RESUMO

We investigate fast-pulse switching of in-plane-magnetized magnetic tunnel junctions (MTJs) within 3-terminal devices in which spin-transfer torque is applied to the MTJ by the giant spin Hall effect. We measure reliable switching, with write error rates down to 10-5, using current pulses as short as just 2 ns in duration. This represents the fastest reliable switching reported to date for any spin-torque-driven magnetic memory geometry and corresponds to a characteristic time scale that is significantly shorter than predicted possible within a macrospin model for in-plane MTJs subject to thermal fluctuations at room temperature. Using micromagnetic simulations, we show that in the three-terminal spin-Hall devices the Oersted magnetic field generated by the pulse current strongly modifies the magnetic dynamics excited by the spin-Hall torque, enabling this unanticipated performance improvement. Our results suggest that in-plane MTJs controlled by Oersted-field-assisted spin-Hall torque are a promising candidate for both cache memory applications requiring high speed and for cryogenic memories requiring low write energies.

11.
Micromachines (Basel) ; 15(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675299

RESUMO

In the era of widespread edge computing, energy conservation modes like complete power shutdown are crucial for battery-powered devices, but they risk data loss in volatile memory. Energy autonomous systems, relying on ambient energy, face operational challenges due to power losses. Recent advancements in emerging nonvolatile memories (NVMs) like FRAM, RRAM, MRAM, and PCM offer mature solutions to sustain work progress with minimal energy overhead during outages. This paper thoroughly reviews utilizing emerging NVMs in microcontroller units (MCUs), comparing their key attributes to describe unique benefits and potential applications. Furthermore, we discuss the intricate details of NVM circuit design and NVM-driven compute-in-memory (CIM) architectures. In summary, integrating emerging NVMs into MCUs showcases promising prospects for next-generation applications such as Internet of Things and neural networks.

12.
J Phys Condens Matter ; 36(14)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157556

RESUMO

The power consumption of modern random access memory (RAM) has been a motivation for the development of low-power non-volatile magnetic RAM (MRAM). Based on a CoFeB/MgO magnetic tunnel junction, MRAM must satisfy high thermal stability and a low writing current while being scaled down to a sub-20 nm size to compete with the densities of current RAM technology. A recent development has been to exploit perpendicular shape anisotropy along the easy axis by creating tower structures, with the free layers' thickness (along the easy axis) being larger than its width. Here we use an atomistic model to explore the temperature dependent properties of thin cylindrical MRAM towers of 5 nm diameter while scaling down the free layer from 48 to 8 nm thick. We find thermal fluctuations are a significant driving force for the switching mechanism at operational temperatures by analysing the switching field distribution from hysteresis data. We find that a reduction of the free layer thickness below 18 nm rapidly loses shape anisotropy, and consequently stability, even at 0 K. Additionally, there is a change in the switching mechanism as the free layer is reduced to 8 nm. Coherent rotation is observed for the 8 nm free layer, while all taller towers demonstrate incoherent rotation via a propagated domain wall.

13.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793141

RESUMO

In advancing the study of magnetization dynamics in STT-MRAM devices, we employ the spin drift-diffusion model to address the back-hopping effect. This issue manifests as unwanted switching either in the composite free layer or in the reference layer in synthetic antiferromagnets-a challenge that becomes more pronounced with device miniaturization. Although this miniaturization aims to enhance memory density, it inadvertently compromises data integrity. Parallel to this examination, our investigation of the interface exchange coupling within multilayer structures unveils critical insights into the efficacy and dependability of spintronic devices. We particularly scrutinize how exchange coupling, mediated by non-magnetic layers, influences the magnetic interplay between adjacent ferromagnetic layers, thereby affecting their magnetic stability and domain wall movements. This investigation is crucial for understanding the switching behavior in multi-layered structures. Our integrated methodology, which uses both charge and spin currents, demonstrates a comprehensive understanding of MRAM dynamics. It emphasizes the strategic optimization of exchange coupling to improve the performance of multi-layered spintronic devices. Such enhancements are anticipated to encourage improvements in data retention and the write/read speeds of memory devices. This research, thus, marks a significant leap forward in the refinement of high-capacity, high-performance memory technologies.

14.
ACS Nano ; 18(20): 12853-12860, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718347

RESUMO

Magnetic random-access memory (MRAM), which stores information through control of the magnetization direction, offers promising features as a viable nonvolatile memory alternative, including high endurance and successful large-scale commercialization. Recently, MRAM applications have extended beyond traditional memories, finding utility in emerging computing architectures such as in-memory computing and probabilistic bits. In this work, we report highly reliable MRAM-based security devices, known as physical unclonable functions (PUFs), achieved by exploiting nanoscale perpendicular magnetic tunnel junctions (MTJs). By intentionally randomizing the magnetization direction of the antiferromagnetically coupled reference layer of the MTJs, we successfully create an MRAM-PUF. The proposed PUF shows ideal uniformity and uniqueness and, in particular, maintains performance over a wide temperature range from -40 to +150 °C. Moreover, rigorous testing with more than 1584 challenge-response pairs of 64 bits each confirms resilience against machine learning attacks. These results, combined with the merits of commercialized MRAM technology, would facilitate the implementation of MRAM-PUFs.

15.
Natl Sci Rev ; 10(10): nwad093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37671323

RESUMO

Versatile memory is strongly desired for end users, to protect their information in the information era. In particular, bit-level switchable memory that can be switched from rewritable to read-only function would allow end users to prevent important data being tampered with. However, no such switchable memory has been reported. We demonstrate that the rewritable function can be converted into read-only function by applying a sufficiently large current pulse in a U-shaped domain-wall memory, which comprises an asymmetric Pt/Co/Ru/AlOx heterostructure with strong Dzyaloshinskii-Moriya interaction. Wafer-scale switchable magnetic domain-wall memory arrays on 4-inch Si/SiO2 substrate are demonstrated. Furthermore, we confirm that the information can be stored in rewritable or read-only states at bit level according to the security needs of end users. Our work not only provides a solution for personal confidential data, but also paves the way for developing multifunctional spintronic devices.

16.
Micromachines (Basel) ; 14(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630117

RESUMO

We employ a fully three-dimensional model coupling magnetization, charge, spin, and temperature dynamics to study temperature effects in spin-orbit torque (SOT) magnetoresistive random access memory (MRAM). SOTs are included by considering spin currents generated through the spin Hall effect. We scale the magnetization parameters with the temperature. Numerical experiments show several time scales for temperature dynamics. The relatively slow temperature increase, after a rapid initial temperature rise, introduces an incubation time to the switching. Such a behavior cannot be reproduced with a constant temperature model. Furthermore, the critical SOT switching voltage is significantly reduced by the increased temperature. We demonstrate this phenomenon for switching of field-free SOT-MRAM. In addition, with an external-field-assisted switching, the critical SOT voltage shows a parabolic decrease with respect to the voltage applied across the magnetic tunnel junction (MTJ) of the SOT-MRAM cell, in agreement with recent experimental data.

17.
Micromachines (Basel) ; 14(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241522

RESUMO

Because of their nonvolatile nature and simple structure, the interest in MRAM devices has been steadily growing in recent years. Reliable simulation tools, capable of handling complex geometries composed of multiple materials, provide valuable help in improving the design of MRAM cells. In this work, we describe a solver based on the finite element implementation of the Landau-Lifshitz-Gilbert equation coupled to the spin and charge drift-diffusion formalism. The torque acting in all layers from different contributions is computed from a unified expression. In consequence of the versatility of the finite element implementation, the solver is applied to switching simulations of recently proposed structures based on spin-transfer torque, with a double reference layer or an elongated and composite free layer, and of a structure combining spin-transfer and spin-orbit torques.

18.
Fundam Res ; 2(4): 522-534, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38934004

RESUMO

Over the past few decades, the diversified development of antiferromagnetic spintronics has made antiferromagnets (AFMs) interesting and very useful. After tough challenges, the applications of AFMs in electronic devices have transitioned from focusing on the interface coupling features to achieving the manipulation and detection of AFMs. As AFMs are internally magnetic, taking full use of AFMs for information storage has been the main target of research. In this paper, we provide a comprehensive description of AFM spintronics applications from the interface coupling, read-out operations, and writing manipulations perspective. We examine the early use of AFMs in magnetic recordings and conventional magnetoresistive random-access memory (MRAM), and review the latest mechanisms of the manipulation and detection of AFMs. Finally, based on exchange bias (EB) manipulation, a high-performance EB-MRAM is introduced as the next generation of AFM-based memories, which provides an effective method for read-out and writing of AFMs and opens a new era for AFM spintronics.

19.
Micromachines (Basel) ; 13(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557523

RESUMO

Spin-transfer torque magnetic random-access memory (STT-MRAM) has several desirable features, such as non-volatility, high integration density, and near-zero leakage power. However, it is challenging to adopt STT-MRAM in a wide range of memory applications owing to the long write latency and a tradeoff between read stability and write ability. To mitigate these issues, an STT-MRAM bit cell can be designed with two transistors to support multiple ports, as well as the independent optimization of read stability and write ability. The multi-port STT-MRAM, however, is achieved at the expense of a higher area requirement due to an additional transistor per cell. In this work, we propose an area-efficient design of 1R/1W dual-port STT-MRAM that shares a bitline between two adjacent bit cells. We identify that the bitline sharing may cause simultaneous access conflicts, which can be effectively alleviated by using the bit-interleaving architecture with a long interleaving distance and the sufficient number of word lines per memory bank. We report various metrics of the proposed design based on the bit cell design using a 45 nm process. Compared to a standard single-port STT-MRAM, the proposed design shows a 15% lower read power and a 19% higher read-disturb margin. Compared with prior work on the 1R/1W dual-port STT-MRAM, the proposed design improves the area by 25%.

20.
Micromachines (Basel) ; 13(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35888821

RESUMO

Spin-transfer torque magnetoresistive random access memory (STT-MRAM) applications have received considerable attention as a possible alternative for universal memory applications because they offer a cost advantage comparable to that of a dynamic RAM with fast performance comparable to that of a static RAM, while solving the scaling issues faced by conventional MRAMs. However, owing to the decrease in supply voltage (VDD) and increase in process fluctuations, STT-MRAMs require an advanced sensing circuit (SC) to ensure a sufficient read yield in deep submicron technology. In this study, we propose a timing-based split-path SC (TSSC) that can achieve a greater read yield compared to a conventional split-path SC (SPSC) by employing a timing-based dynamic reference voltage technique to minimize the threshold voltage mismatch effects. Monte Carlo simulation results based on industry-compatible 28-nm model parameters reveal that the proposed TSSC method obtains a 42% higher read access pass yield at a nominal VDD of 1.0 V compared to the SPSC in terms of iso-area and -power, trading off 1.75× sensing time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA