Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroradiology ; 65(12): 1793-1802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848741

RESUMO

PURPOSE: This article evaluates the feasibility, safety, and efficacy of MRI-guided lumbar or sacral nerve root infiltration for chronic back pain. We compared the outcomes of our MRI-guided infiltrations with data from CT-guided infiltrations reported in the literature and explored the potential advantages of MRI guidance. METHOD: Forty-eight MRI-guided nerve root infiltrations were performed using a 3 T MRI machine. The optimal needle path was determined using breathhold T2-weighted sequences, and the needle was advanced under interleaved guidance based on breathhold PD-weighted images. Pain levels were assessed using a numeric rating scale (NRS) before the procedure and up to 5 months after, during follow-up. Procedure success was evaluated by comparing patients' pain levels before and after the infiltration. RESULTS: The MRI-guided infiltrations yielded pain reduction 1 week after the infiltration in 92% of cases, with an average NRS substantial change of 3.9 points. Pain reduction persisted after 5 months for 51% of procedures. No procedure-related complications occurred. The use of a 22G needle and reconstructed subtraction images from T2 FatSat sequences improved the workflow. CONCLUSION: Our study showed that MRI-guided nerve root infiltration is a feasible, safe, and effective treatment option for chronic back pain. Precise positioning of the needle tip and accurate distribution of the injected solution contributed to the effectiveness of MRI-guided infiltration, which appeared to be as accurate as CT-guided procedures. Further research is needed to explore the potential benefits of metal artifact reduction sequences to optimize chronic back pain management.


Assuntos
Região Lombossacral , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Raízes Nervosas Espinhais , Dor nas Costas , Vértebras Lombares/diagnóstico por imagem , Resultado do Tratamento
2.
J Appl Clin Med Phys ; 24(7): e13959, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37147912

RESUMO

BACKGROUND AND PURPOSE: Anatomic changes during head and neck radiotherapy can impact dose delivery, necessitate adaptive replanning, and indicate patient-specific response to treatment. We have developed an automated system to track these changes through longitudinal MRI scans to aid identification and clinical intervention. The purpose of this article is to describe this tracking system and present results from an initial cohort of patients. MATERIALS AND METHODS: The Automated Watchdog in Adaptive Radiotherapy Environment (AWARE) was developed to process longitudinal MRI data for radiotherapy patients. AWARE automatically identifies and collects weekly scans, propagates radiotherapy planning structures, computes structure changes over time, and reports important trends to the clinical team. AWARE also incorporates manual structure review and revision from clinical experts and dynamically updates tracking statistics when necessary. AWARE was applied to patients receiving weekly T2-weighted MRI scans during head and neck radiotherapy. Changes in nodal gross tumor volume (GTV) and parotid gland delineations were tracked over time to assess changes during treatment and identify early indicators of treatment response. RESULTS: N = 91 patients were tracked and analyzed in this study. Nodal GTVs and parotids both shrunk considerably throughout treatment (-9.7 ± 7.7% and -3.7 ± 3.3% per week, respectively). Ipsilateral parotids shrunk significantly faster than contralateral (-4.3 ± 3.1% vs. -2.9 ± 3.3% per week, p = 0.005) and increased in distance from GTVs over time (+2.7 ± 7.2% per week, p < 1 × 10-5 ). Automatic structure propagations agreed well with manual revisions (Dice = 0.88 ± 0.09 for parotids and 0.80 ± 0.15 for GTVs), but for GTVs the agreement degraded 4-5 weeks after the start of treatment. Changes in GTV volume observed by AWARE as early as one week into treatment were predictive of large changes later in the course (AUC = 0.79). CONCLUSION: AWARE automatically identified longitudinal changes in GTV and parotid volumes during radiotherapy. Results suggest that this system may be useful for identifying rapidly responding patients as early as one week into treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Pescoço , Planejamento da Radioterapia Assistida por Computador/métodos , Cabeça , Dosagem Radioterapêutica
3.
BMC Med Imaging ; 21(1): 110, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253181

RESUMO

BACKGROUND: For the treatment of radicular pain, nerve root infiltrations can be performed under MRI guidance in select, typically younger, patients where repeated CT exams are not desirable due to associated radiation risk, or potential allergic reactions to iodinated contrast medium. METHODS: Fifteen 3 T MRI-guided nerve root infiltrations were performed in 12 patients with a dedicated surface coil combined with the standard spine coil, using a breathhold PD sequence. The needle artifact on the MR images and the distance between the needle tip and the infiltrated nerve root were measured. RESULTS: The distance between the needle tip and the nerve root was 2.1 ± 1.4 mm. The visual artifact width, perpendicular to the needle long axis, was 2.1 ± 0.7 mm. No adverse events were reported. CONCLUSION: This technical note describes the optimization of the procedure in a 3 T magnetic field, including reported procedure time and an assessment of targeting precision.


Assuntos
Injeções Espinhais/métodos , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Radiculopatia/tratamento farmacológico , Raízes Nervosas Espinhais/diagnóstico por imagem , Dexametasona/administração & dosagem , Feminino , Glucocorticoides/administração & dosagem , Humanos , Dor Lombar/tratamento farmacológico , Vértebras Lombares/inervação , Masculino , Pessoa de Meia-Idade , Ropivacaina/administração & dosagem , Nervo Isquiático/diagnóstico por imagem
4.
AJR Am J Roentgenol ; 213(4): W171-W179, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268734

RESUMO

OBJECTIVE. The objective of our study was to analyze the feasibility and potential role of robotic-assisted transrectal MRI-guided biopsy for the diagnosis of prostate cancer. MATERIALS AND METHODS. A total of 57 patients (mean age, 67 ± 6 [SD] years; age range, 57-83 years; mean prostate-specific antigen level, 10.7 ± 6.1 ng/mL) with a single prostatic lesion visible on biparametric MRI (T2-weighted and DW images) underwent robotic-assisted MRI-guided transrectal biopsy. The procedure was analyzed in terms of technical success, defined by an accurate alignment of the needle guide with the lesion; occupation time of the MRI room; number of cores; cancer detection rate (CDR); and complications. RESULTS. The biparametric MRI score was 3, 4, and 5 in 11 (19%), 30 (53%), and 16 (28%) of the 57 patients, respectively. Twenty-three lesions (23/57, 40%) originated in the peripheral zone and 34 (34/57, 60%) in the transition zone. Software-based adjustments of the robot allowed the needle guide to be aligned with the target in all lesions. The number of cores was one, two, three, and four in one (2%), 36 (63%), 18 (32%), and three (5%) patients, respectively. Obtaining more than two cores had no incremental value in determining the Gleason score or the maximum cancer core length (MCCL). The overall CDR for any cancer was 67% (38/57). It was 95% (36/38) for tumors with Gleason grade of more than 3 or MCCL greater than 3 mm and 53% (20/38) for tumors with Gleason score greater than 6. No complications were observed. The median occupation time of the MRI room was 37.8 ± 9.7 minutes (range, 32-74 minutes). CONCLUSION. Robotic-assisted MRI-guided biopsy yields 100% technical success rate with a short MRI room occupation time and high CDRs using one or two cores.


Assuntos
Biópsia Guiada por Imagem/métodos , Imagem por Ressonância Magnética Intervencionista , Neoplasias da Próstata/diagnóstico por imagem , Robótica/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Antígeno Prostático Específico/sangue , Reto , Estudos Retrospectivos
5.
Skeletal Radiol ; 48(7): 1149-1153, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30523379

RESUMO

Aneurysmal bone cysts are benign, expansile, lytic bone lesions that behave in a locally aggressive manner. Although radiography and computed tomography (CT) can detect the lesion, magnetic resonance imaging (MRI) is ideal for the demonstration of characteristic fluid-fluid levels, extent, and margins. Treatment typically consists of open surgical curettage with the addition of local adjuvants and bone grafting. Residual or recurring lesions may be treated using percutaneous cryoablation. Although CT guidance is often employed for image guidance, visualization and targeting of smaller clusters can be challenging in young children, secondary to the partially mineralized bone matrix in the immature skeleton. In such cases, the higher contrast resolution of interventional MRI affords direct visualization and targeting of small aneurysmal bone cysts, accurate monitoring of the extent of the growing ice ball beyond the lesion's margin, and avoidance of exposure to ionizing radiation. We report a case of a 5-year-old boy with recurrent or remaining aneurysmal bone cysts of the scapula after surgical excision and embolization, which were successfully treated using MRI-guided cryoablation.


Assuntos
Cistos Ósseos Aneurismáticos/terapia , Criocirurgia , Imagem por Ressonância Magnética Intervencionista , Escápula/diagnóstico por imagem , Cistos Ósseos Aneurismáticos/diagnóstico por imagem , Pré-Escolar , Embolização Terapêutica , Humanos , Masculino , Medição da Dor , Recidiva , Tomografia Computadorizada por Raios X
6.
BMC Cancer ; 17(1): 181, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274211

RESUMO

BACKGROUND: A shift towards less burdening and more patient friendly treatments for breast cancer is currently ongoing. In low-risk patients with early-stage disease, accelerated partial breast irradiation (APBI) is an alternative for whole breast irradiation following breast-conserving surgery. MRI-guided single dose ablative APBI has the potential to offer a minimally burdening, non-invasive treatment that could replace current breast-conserving therapy. METHODS: The ABLATIVE study is a prospective, single arm, multicenter study evaluating preoperative, single dose, ablative radiation treatment in patients with early-stage breast cancer. Patients with core biopsy proven non-lobular invasive breast cancer, (estrogen receptor positive, Her2 negative, maximum tumor size 3.0 cm on diagnostic MRI) and a negative sentinel node biopsy are eligible. Radiotherapy (RT) planning will be performed using a contrast enhanced (CE) planning CT-scan, co-registered with a CE-MRI, both in supine RT position. A total of twenty-five consecutive patients will be treated with a single ablative RT dose of 20 Gy to the tumor and 15 Gy to the tumorbed. Follow-up MRIs are scheduled within 1 week, 2, 4 and 6 months after single-dose RT. Breast-conserving surgery is scheduled at six months following RT. Primary study endpoint is pathological complete response. Secondary study endpoints are the radiological response and toxicity. Furthermore, patients will fill out questionnaires on quality of life and functional status. Cosmetic outcome will be evaluated by the treating radiation oncologist, patient and 'Breast Cancer Conservation Treatment cosmetic results' software. Recurrence and survival rates will be assessed. The patients will be followed up to 10 years after diagnosis. If patients give additional informed consent, a biopsy and a part of the irradiated specimen will be stored at the local Biobank and used for future research on radiotherapy response associated genotyping. DISCUSSION: The ABLATIVE study evaluates MRI-guided single dose ablative RT in patients with early-stage breast cancer, aiming at a less burdening and non-invasive alternative for current breast-conserving treatment. TRIAL REGISTRATION: ClinicalTrials.gov registration number NCT02316561 . The trial was registrated prospectively on October 10th 2014.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Radioterapia de Intensidade Modulada/métodos , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Cuidados Pré-Operatórios , Estudos Prospectivos , Qualidade de Vida , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Resultado do Tratamento
7.
Future Oncol ; 13(6): 537-549, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27776423

RESUMO

With the advent of focal therapy as a recognized treatment option for men with prostate cancer, there are a host of emerging interventions that take advantage of MRI for image guidance. Focal therapy affords a middleground option for patients with low- to intermediate-grade prostate cancer by providing a means of keeping their cancer at bay while avoiding the negative consequences of radical therapies. However, the practice of focal treatment is far from straightforward, with some believing focal treatment errs on the side of overtreatment among patients with low-grade cancer; others worry it is undertreatment in potentially significant multifocal disease. Further research is necessary, both relating to focal therapy in general and to the utility of each MRI-guided focal treatment discussed.


Assuntos
Técnicas de Ablação , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Terapia Combinada , Detecção Precoce de Câncer , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Resultado do Tratamento
8.
Skeletal Radiol ; 46(1): 51-58, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771753

RESUMO

OBJECTIVE: To assess the technical success and duration of magnetic resonance imaging (MRI)-guided freehand direct shoulder arthrography (FDSA) with near real-time imaging implemented in a routine shoulder MRI examination on an open 1.0-T MRI scanner, and to assess the learning curve of residents new to this technique. METHODS: An experienced MRI interventionalist (the expert) performed 125 MRI-guided FDSA procedures, and 75 patients were treated by one of three residents without previous experience in MRI-guided FDSA. Technical success rate and duration of MRI-guided FDSA of the expert and the residents were compared. The residents' learning curves were assessed. The occurrence of extra-articular deposition and leakage of contrast media from the puncture site and the subsequent impairment of image interpretation were retrospectively analyzed. RESULTS: Overall technical success was 97.5 %. The expert needed overall fewer puncture needle readjustments and was faster at puncture needle positioning (p < 0.01). The learning curve of the residents, however, was steep. They leveled with the performance of the expert after ≈ 15 interventions. With a minimal amount of training all steps of MRI-guided FDSA can be performed in ≤10 min. CONCLUSION: Magnetic resonance-guided FDSA in an open 1.0-T MRI scanner can be performed with high technical success in a reasonably short amount of time. Only a short learning curve is necessary to achieve expert level.


Assuntos
Educação de Pós-Graduação em Medicina , Imagem por Ressonância Magnética Intervencionista/métodos , Ortopedia/educação , Radiologia/educação , Lesões do Ombro/diagnóstico por imagem , Articulação do Ombro/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Internato e Residência , Curva de Aprendizado , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
9.
J Magn Reson Imaging ; 42(1): 63-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25263213

RESUMO

PURPOSE: To demonstrate the utility of a robotic needle-guidance template device as compared to a manual template for in-bore 3T transperineal magnetic resonance imaging (MRI)-guided prostate biopsy. MATERIALS AND METHODS: This two-arm mixed retrospective-prospective study included 99 cases of targeted transperineal prostate biopsies. The biopsy needles were aimed at suspicious foci noted on multiparametric 3T MRI using manual template (historical control) as compared with a robotic template. The following data were obtained: the accuracy of average and closest needle placement to the focus, histologic yield, percentage of cancer volume in positive core samples, complication rate, and time to complete the procedure. RESULTS: In all, 56 cases were performed using the manual template and 43 cases were performed using the robotic template. The mean accuracy of the best needle placement attempt was higher in the robotic group (2.39 mm) than the manual group (3.71 mm, P < 0.027). The mean core procedure time was shorter in the robotic (90.82 min) than the manual group (100.63 min, P < 0.030). Percentage of cancer volume in positive core samples was higher in the robotic group (P < 0.001). Cancer yields and complication rates were not statistically different between the two subgroups (P = 0.557 and P = 0.172, respectively). CONCLUSION: The robotic needle-guidance template helps accurate placement of biopsy needles in MRI-guided core biopsy of prostate cancer.


Assuntos
Marcadores Fiduciais , Biópsia Guiada por Imagem/instrumentação , Imagem por Ressonância Magnética Intervencionista/instrumentação , Neoplasias da Próstata/patologia , Robótica/instrumentação , Idoso , Idoso de 80 Anos ou mais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Biópsia Guiada por Imagem/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Pessoa de Meia-Idade , Períneo/patologia , Reprodutibilidade dos Testes , Robótica/métodos , Sensibilidade e Especificidade
10.
Scand J Gastroenterol ; 49(6): 722-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694300

RESUMO

BACKGROUND AND STUDY AIMS: MRI-guided procedures combine high-quality imaging with lack of radiation. Percutaneous transhepatic cholangiodrainage under real-time MRI guidance (MRI-PTCD) seems promising, allowing targeted puncture and avoiding multiple blind passes and use of contrast, which are associated with standard PTCD's heaviest complications. PATIENTS AND METHODS: Aim of this study was to investigate the feasibility of MRI-PTCD in three outbred piglets. Obstructive cholestasis was induced by common bile duct ligation. Two days later, MRI-PTCD was performed (open MRI, 1.0 Tesla) with prototype MRI-compatible accessories. Visualization was achieved with a balanced steady-state free precession real-time sequence (bSSFP: 0.75 frames/s, TR/TE [ms]: 7.2/3.6; flip angle: 45°; 200 × 200 matrix size; resolution: 1.3 × 1.3 mm(2), slice thickness: 7 mm). Cannulation of the bile ducts was followed by placement of Yamakawa drainages. RESULTS: Twelve punctures were performed (four per animal, 10/12 successful); in 2/10 the bile ducts could not be cannulated. Animal survival was 100% and no significant complications occurred. CONCLUSIONS: Initial data show that MRI-PTCD can be successfully performed. This may lead to establishment of a new optimized PTCD technique compared to the standard approach under fluoroscopy.


Assuntos
Ductos Biliares/cirurgia , Colestase/cirurgia , Drenagem/métodos , Imagem por Ressonância Magnética Intervencionista , Animais , Cateterismo/métodos , Drenagem/instrumentação , Estudos de Viabilidade , Feminino , Cirurgia Assistida por Computador , Suínos
11.
Front Oncol ; 14: 1401703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919525

RESUMO

Introduction: MRI-guided radiotherapy (MRgRT) allows for direct motion management and real-time radiation treatment plan adaptation. We report our institutional experience using low strength 0.35T MRgRT for thoracic malignancies, and evaluate changes in treatment duty cycle between first and final MRgRT fractions. Methods: All patients with intrathoracic tumors treated with MRgRT were included. The primary reason for MRgRT (adjacent organ at risk [OAR] vs. motion management [MM] vs. other) was recorded. Tumor location was classified as central (within 2cm of tracheobronchial tree) vs. non-central, and further classified by the Expanded HILUS grouping. Gross tumor volume (GTV) motion, planning target volume expansions, dose/fractionation, treatment plan time, and total delivery time were extracted from the treatment planning system. Treatment plan time was defined as the time for beam delivery, including multileaf collimator (MLC) motion, and gantry rotation. Treatment delivery time was defined as the time from beam on to completion of treatment, including treatment plan time and patient respiratory breath holds. Duty cycle was calculated as treatment plan time/treatment delivery time. Duty cycles were compared between first and final fraction using a two-sample t-test. Results: Twenty-seven patients with thoracic tumors (16 non-small cell lung cancer and 11 thoracic metastases) were treated with MRgRT between 12/2021 and 06/2023. Fifteen patients received MRgRT due to OAR and 11 patients received MRgRT for motion management. 11 patients had central tumors and all were treated with MRgRT due to OAR risk. The median dose/fractionation was 50 Gy/5 fractions. For patients treated due to OAR (n=15), 80% had at least 1 adapted fraction during their course of radiotherapy. There was no plan adaptation for patients treated due to motion management (n=11). Mean GTV motion was significantly higher for patients treated due to motion management compared to OAR (16.1mm vs. 6.5mm, p=0.011). Mean duty cycle for fraction 1 was 54.2% compared to 62.1% with final fraction (p=0.004). Mean fraction 1 duty cycle was higher for patients treated due to OAR compared to patients treated for MM (61% vs. 45.0%, p=0.012). Discussion: Duty cycle improved from first fraction to final fraction possibly due to patient familiarity with treatment. Duty cycle was improved for patients treated due to OAR risk, likely due to more central location and thus decreased target motion.

12.
Front Med (Lausanne) ; 11: 1319046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420359

RESUMO

Vascular malformations are congenital, non-neoplastic lesions that arise secondary to defects in angiogenesis. Vascular malformations are divided into high-flow (arteriovenous malformation) and low-flow (venous malformations and lymphatic malformations). Magnetic resonance imaging (MRI) is the standard for pre-and post-intervention assessments, while ultrasound (US), X-ray fluoroscopy and computed tomography (CT) are used for intra-procedural guidance. Sclerotherapy, an image-guided therapy that involves the injection of a sclerosant directly into the malformation, is typically the first-line therapy for treating low-flow vascular malformations. Sclerotherapy induces endothelial damage and necrosis/fibrosis with eventual involution of the malformation. Image-guided thermal therapies involve freezing or heating target tissue to induce cell death and necrosis. MRI is an alternative for intra-procedural guidance and monitoring during the treatment of vascular malformations. MR can provide dynamic, multiplanar imaging that delineates surrounding critical structures such as nerves and vasculature. Multiple studies have demonstrated that MR-guided treatment of vascular malformations is safe and effective. This review will detail (1) the use of MR for the classification and diagnosis of vascular malformations, (2) the current literature surrounding MR-guided treatment of vascular malformations, (3) a series of cases of MR-guided sclerotherapy and thermal ablation for the treatment of vascular malformations, and (4) a discussion of technologies that may potentiate interventional MRI adoption including high intensity focused ultrasound and guided laser ablation.

13.
World Neurosurg ; 181: e833-e840, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925150

RESUMO

BACKGROUND: The Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects (CAPTIVE) study is a phase II clinical trial testing the efficacy of a recombinant adenovirus DNX-2401 combined with the immune checkpoint inhibitor pembrolizumab. Here, we report the first patients in this study who underwent viral delivery through real-time magnetic resonance imaging (MRI) stereotaxis-guided SmartFlow convection delivery of DNX-2401. METHODS: Patients who underwent real-time MRI-guided DNX-2401 delivery through the SmartFlow convection catheter were prospectively followed. RESULTS: Precise catheter placement was achieved in all patients treated, and no adverse events were noted. Average radial error from target was 0.9 mm. Average procedural time was 3 hours 16 minutes and was comparable to other convection-enhanced delivery techniques. In 2 patients, delivery of DNX-2401 was visualized as >1 cm maximal diameter of T1 hypointensity infusate on MRI obtained immediately after completion of viral infusion. These patients exhibited partial response based on Response Assessment in Neuro-Oncology assessment. The remaining patient showed <1 cm maximal diameter of infusate on immediate postinfusion MRI and showed disease progression on subsequent MRI. CONCLUSIONS: Our pilot case series supports compatibility of the SmartFlow system with oncolytic adenovirus delivery and provides the basis for future validation studies.


Assuntos
Convecção , Sistemas de Liberação de Medicamentos , Humanos , Catéteres , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Estudos Prospectivos
14.
Radiat Oncol ; 18(1): 135, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574549

RESUMO

BACKGROUND AND PURPOSE: Magnetic resonance imaging guided radiotherapy (MRgRT) offers treatment plan adaptation to the anatomy of the day. In the current MRgRT workflow, this requires the time consuming and repetitive task of manual delineation of organs-at-risk (OARs), which is also prone to inter- and intra-observer variability. Therefore, deep learning autosegmentation (DLAS) is becoming increasingly attractive. No investigation of its application to OARs in thoracic magnetic resonance images (MRIs) from MRgRT has been done so far. This study aimed to fill this gap. MATERIALS AND METHODS: 122 planning MRIs from patients treated at a 0.35 T MR-Linac were retrospectively collected. Using an 80/19/23 (training/validation/test) split, individual 3D U-Nets for segmentation of the left lung, right lung, heart, aorta, spinal canal and esophagus were trained. These were compared to the clinically used contours based on Dice similarity coefficient (DSC) and Hausdorff distance (HD). They were also graded on their clinical usability by a radiation oncologist. RESULTS: Median DSC was 0.96, 0.96, 0.94, 0.90, 0.88 and 0.78 for left lung, right lung, heart, aorta, spinal canal and esophagus, respectively. Median 95th percentile values of the HD were 3.9, 5.3, 5.8, 3.0, 2.6 and 3.5 mm, respectively. The physician preferred the network generated contours over the clinical contours, deeming 85 out of 129 to not require any correction, 25 immediately usable for treatment planning, 15 requiring minor and 4 requiring major corrections. CONCLUSIONS: We trained 3D U-Nets on clinical MRI planning data which produced accurate delineations in the thoracic region. DLAS contours were preferred over the clinical contours.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Órgãos em Risco , Processamento de Imagem Assistida por Computador/métodos
15.
Front Cardiovasc Med ; 10: 1233093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745095

RESUMO

Introduction: Magnetic Resonance Imaging (MRI) is a promising alternative to standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures as it enables soft tissue visualization, avoids ionizing radiation and provides improved hemodynamic data. MRI-guided cardiac catheterization procedures currently require frequent manual tracking of the imaging plane during navigation to follow the tip of a gadolinium-filled balloon wedge catheter, which unnecessarily prolongs and complicates the procedures. Therefore, real-time automatic image-based detection of the catheter balloon has the potential to improve catheter visualization and navigation through automatic slice tracking. Methods: In this study, an automatic, parameter-free, deep-learning-based post-processing pipeline was developed for real-time detection of the catheter balloon. A U-Net architecture with a ResNet-34 encoder was trained on semi-artificial images for the segmentation of the catheter balloon. Post-processing steps were implemented to guarantee a unique estimate of the catheter tip coordinates. This approach was evaluated retrospectively in 7 patients (6M and 1F, age = 7 ± 5 year) who underwent an MRI-guided right heart catheterization procedure with all images acquired in an orientation unseen during training. Results: The overall accuracy, specificity and sensitivity of the proposed catheter tracking strategy over all 7 patients were 98.4 ± 2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively. The computation time of the deep-learning-based segmentation step was ∼10 ms/image, indicating its compatibility with real-time constraints. Conclusion: Deep-learning-based catheter balloon tracking is feasible, accurate, parameter-free, and compatible with real-time conditions. Online integration of the technique and its evaluation in a larger patient cohort are now warranted to determine its benefit during MRI-guided cardiac catheterization.

16.
Int J Med Robot ; 19(1): e2466, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36169287

RESUMO

BACKGROUND: A robotic device featuring three motion axes was manufactured for preclinical research on focussed ultrasound (FUS). The device comprises a 2.75 MHz single element ultrasonic transducer and is guided by Magnetic Resonance Imaging (MRI). METHODS: The compatibility of the device with the MRI was evaluated by estimating the influence on the signal-to-noise ratio (SNR). The efficacy of the transducer in generating ablative temperatures was evaluated in phantoms and excised porcine tissue. RESULTS: System's activation in the MRI scanner reduced the SNR to an acceptable level without compromising the image quality. The transducer demonstrated efficient heating ability as proved by MR thermometry. Discrete and overlapping thermal lesions were inflicted in excised tissue. CONCLUSIONS: The FUS system was proven effective for FUS thermal applications in the MRI setting. It can thus be used for multiple preclinical applications of the emerging MRI-guided FUS technology. The device can be scaled-up for human use with minor modifications.


Assuntos
Procedimentos Cirúrgicos Robóticos , Suínos , Humanos , Animais , Procedimentos Cirúrgicos Robóticos/métodos , Ultrassonografia , Imageamento por Ressonância Magnética/métodos , Ultrassom , Imagens de Fantasmas
17.
Bioengineering (Basel) ; 10(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36829745

RESUMO

The generation of synthetic CT for carbon ion radiotherapy (CIRT) applications is challenging, since high accuracy is required in treatment planning and delivery, especially in an anatomical site as complex as the abdomen. Thirty-nine abdominal MRI-CT volume pairs were collected and a three-channel cGAN (accounting for air, bones, soft tissues) was used to generate sCTs. The network was tested on five held-out MRI volumes for two scenarios: (i) a CT-based segmentation of the MRI channels, to assess the quality of sCTs and (ii) an MRI manual segmentation, to simulate an MRI-only treatment scenario. The sCTs were evaluated by means of similarity metrics (e.g., mean absolute error, MAE) and geometrical criteria (e.g., dice coefficient). Recalculated CIRT plans were evaluated through dose volume histogram, gamma analysis and range shift analysis. The CT-based test set presented optimal MAE on bones (86.03 ± 10.76 HU), soft tissues (55.39 ± 3.41 HU) and air (54.42 ± 11.48 HU). Higher values were obtained from the MRI-only test set (MAEBONE = 154.87 ± 22.90 HU). The global gamma pass rate reached 94.88 ± 4.9% with 3%/3 mm, while the range shift reached a median (IQR) of 0.98 (3.64) mm. The three-channel cGAN can generate acceptable abdominal sCTs and allow for CIRT dose recalculations comparable to the clinical plans.

18.
Front Oncol ; 13: 1061854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776319

RESUMO

The treatment of central and ultracentral lung tumors with radiotherapy remains an ongoing clinical challenge. The risk of Grade 5 toxicity with ablative radiotherapy doses to these high-risk regions is significant as shown in recent prospective studies. Magnetic resonance (MR) image-guided adaptive radiotherapy (MRgART) is a new technology and may allow the delivery of ablative radiotherapy to these high-risk regions safely. MRgART is able to achieve this by utilizing small treatment margins, real-time gating/tracking and on-table plan adaptation to maintain dose to the tumor but limit dose to critical structures. The process of MRgART is complex and has nuances and challenges for the treatment of lung tumors. We outline the critical steps needed for appropriate delivery of MRgART for lung tumors safely and effectively.

19.
ACS Appl Mater Interfaces ; 14(18): 20616-20627, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471860

RESUMO

Nanochemotherapy is recognized as one of the most promising cancer treatment options, and the design of the carrier has a crucial impact on the final efficacy. To precisely improve the efficacy and reduce the toxicity, we combined the clinical contrast agent (Gd-DTPA) with a stimulus-sensitive o-nitrobenzyl ester and then prepared a series of nNBGD lipids by varying the carbon chain length of the hydrophobic group. The self-assembled nNBGD liposomes can be tracked by MRI to localize the aggregation of drug carriers in vivo, so as to prompt the application of light stimulation at the optimal time to facilitate the precise release of carriers at the lesion site. And the application potential of this strategy was verified with 88% tumor suppression effect in the 12NBGD-DOX+UV group. In addition, this paper emphasizes that small differences in structure can affect the overall performance of the carriers. By exploration of the differences in stability, drug loading, stimulus responsiveness, MRI imaging effect, and toxicity of the series of nNBGD carriers, the relationship between the length of the hydrophobic group of nNBGD lipids and the overall performance of the carriers is given, which provides experimental support and design reference for other carriers.


Assuntos
Doxorrubicina , Neoplasias , Meios de Contraste/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
20.
Front Oncol ; 12: 899567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692776

RESUMO

Background: MRI-guided fusion biopsy is increasingly utilized over systematic 12-core biopsy for men with MRI-visible prostate lesions. Patients and Methods: Patients with MRI visible lesions who underwent MRI-guided fusion and systematic 12-core biopsy from 2016-2020 in the Intermountain Healthcare (IHC) system were consecutively analyzed. This was in the setting of a continuous quality assurance initiative among the reading radiologists. Primary outcome was prostate cancer (PCa) detection defined by Gleason grade group (GGG) 1 or higher. Clinically significant cancer (CSC) was defined as GGG 2 or higher. Patients were stratified by biopsy date, 2016-2017 and 2018-2021, and lesions were stratified by PI-RADS v2 category. Results: A total of 184 patients with 324 MRI-detectable lesions underwent both biopsy modalities in the IHC system from 2016 to 2021. CSC was detected in 23.5% of MRI-guided fusion biopsies. Comparing PI-RAD v2 categories 1-3 to categories 4-5, rate of CSC was 10% and 42% respectively. MRI-guided fusion and systematic 12-core biopsies were concordant for PCa in 77% of men and CSC in 83%. MRI-guided fusion biopsy detected PCa in 26/103 and CSC in 20/131 men in whom systematic 12-core biopsy was negative. Systematic 12-core biopsy detected PCa in 17/94 and CSC in 11/122 men in whom MRI-guided fusion was negative. Conclusions: Omitting MRI-guided fusion or systematic 12-core biopsy would have resulted in underdiagnosis of CSC in 11% or 6% of patients respectively. Combining biopsies increased detection rate of CSC. This was in the setting of a continuous quality assurance program at a large community-based hospital.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA