Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 29, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760841

RESUMO

BACKGROUND: We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS: We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS: For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.


Assuntos
Distrofia Miotônica , Ácido Oleico , Ácido Oleico/farmacologia , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/metabolismo , Humanos , Diferenciação Celular/efeitos dos fármacos , MicroRNAs/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular , Proteínas de Ligação a RNA/metabolismo
2.
Biol Proced Online ; 25(1): 32, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041016

RESUMO

BACKGROUND: Musashi-2 (MSI2) is a critical RNA-binding protein (RBP) whose ectopic expression drives the pathogenesis of various cancers. Accumulating evidence suggests that inducing ferroptosis of tumor cells can inhibit their malignant biological behavior as a promising therapeutic approach. However, it is unclear whether MSI2 regulates cell death in colorectal cancer (CRC), especially the underlying mechanisms and biological effects in CRC ferroptosis remain elusive. METHODS: Experimental methods including qRT‒PCR, immunofluorescence, flow cytometry, western blot, co-immunoprecipitation, CCK-8, colony formation assay, in vitro cell transwell migration and invasion assays, in vivo xenograft tumor experiments, liver and lung CRC metastasis models, CAC mice models, transmission electron microscopy, immunohistochemistry, histopathology, 4D label-free proteomics sequencing, bioinformatic and database analysis were used in this study. RESULTS: Here, we investigated that MSI2 was upregulated in CRC and positively correlated with ferroptosis inhibitor molecules. MSI2 deficiency suppressed CRC malignancy by inhibiting cell proliferation, viability, migration and invasion in vitro and in vivo; and MSI2 deficiency triggered CRC ferroptosis by changing the intracellular redox state (ROS levels and lipid peroxidation), erastin induced cell mortality and viability, iron homeostasis (intracellular total irons and ferrous irons), reduced glutathione (GSH) levels and mitochondrial injury. Mechanistically, through 4D-lable free proteomics analysis on SW620 stable cell lines, we demonstrated that MSI2 directly interacted with p-ERK and MSI2 knockdown downregulated the p-ERK/p38/MAPK axis signaling pathway, which further repressed MAPKAPK2 and HPSB1 phosphorylation, leading to decreased expression of PCNA and Ki67 and increased expression of ACSL4 in cancer cells. Furthermore, HSPB1 could rescue the phenotypes of MSI2 deficiency on CRC ferroptosis in vitro and in vivo. CONCLUSIONS: This study indicates that MSI2 deficiency suppresses the growth and survival of CRC cells and promotes ferroptosis by inactivating the MAPK signaling pathway to inhibit HSPB1 phosphorylation, which leads to downregulation of PCNA and Ki67 and upregulation of ACSL4 in cancer cells and subsequently induces redox imbalance, iron accumulation and mitochondrial shrinkage, ultimately triggering ferroptosis. Therefore, targeted inhibition of MSI2/MAPK/HSPB1 axis to promote ferroptosis might be a potential treatment strategy for CRC.

3.
Basic Res Cardiol ; 118(1): 46, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923788

RESUMO

Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Ratos , Cardiomegalia , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
4.
Hematol Oncol ; 41(1): 178-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36301018

RESUMO

Myelodysplastic syndrome (MDS) represents a group of neoplasms with extensive heterogeneity. Recurrent mutations in dozens of driver genes have been identified in over 90% of MDS cases, although fusion genes are rarely seen. We first report the competitive evolved sub-clonal breakpoint cluster region (BCR)::ABL1 and novel MSI2::PC fusion gene in MDS with del(5q) in initial diagnosis that underwent dismal progression. However, the BCR::ABL1 clone vanished while the MSI2::PC clone rose to the major one with disease progression. A novel MSI2::PC fusion transcript was identified in initial diagnosis and disease progression of the patient through transcriptome sequencing (RNA-seq) and Quantitative reverse transcription polymerase Chain Reaction (PCR) showed MSI2::PC/ABL1 expression at initial diagnosis and disease progression. In addition, mutation screening of 300 leukemia driver genes identified ARID2 c.5046del/p.F1682Lfs*19 and ZNF292 c.4565A > G/p.Q1522R mutation in bone marrow sample at initial diagnosis and disease progression. In conclusion, the dynamic process of the two fusion and phenotype manifestations may help to understand further the molecular significance of the anomalies of BCR::ABL1, MSI2, and PC in oncogenesis.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Síndromes Mielodisplásicas , Humanos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Síndromes Mielodisplásicas/genética , Mutação , Progressão da Doença , Proteínas de Ligação a RNA/genética , Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética
5.
J Biol Chem ; 296: 100048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33168629

RESUMO

The Musashi family of RNA-binding proteins is known for its role in stem-cell renewal and is a negative regulator of cell differentiation. Interestingly, in the retina, the Musashi proteins MSI1 and MSI2 are differentially expressed throughout the cycle of retinal development, with MSI2 protein displaying robust expression in the adult retinal tissue. In this study, we investigated the importance of Musashi proteins in the development and function of photoreceptor neurons in the retina. We generated a pan-retinal and rod photoreceptor neuron-specific conditional KO mouse lacking MSI1 and MSI2. Independent of the sex, photoreceptor neurons with simultaneous deletion of Msi1 and Msi2 were unable to respond to light and displayed severely disrupted photoreceptor outer segment morphology and ciliary defects. Mice lacking MSI1 and MSI2 in the retina exhibited neuronal degeneration, with complete loss of photoreceptors within 6 months. In concordance with our earlier studies that proposed a role for Musashi proteins in regulating alternative splicing, the loss of MSI1 and MSI2 prevented the use of photoreceptor-specific exons in transcripts critical for outer segment morphogenesis, ciliogenesis, and synaptic transmission. Overall, we demonstrate a critical role for Musashi proteins in the morphogenesis of terminally differentiated photoreceptor neurons. This role is in stark contrast with the canonical function of these two proteins in the maintenance and renewal of stem cells.


Assuntos
Processamento Alternativo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transmissão Sináptica , Visão Ocular , Animais , Cílios/genética , Cílios/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Células Fotorreceptoras de Vertebrados/patologia , Proteínas de Ligação a RNA/genética , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
6.
J Cell Biochem ; 122(12): 1925-1935, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581457

RESUMO

Adrenocortical carcinoma (ACC) is a rare, but highly aggressive cancer of the adrenal cortex with a generally poor prognosis. Despite being rare, completely resected ACCs present a high risk of recurrence. Musashi-2 (MSI2) has recently been recognized as a potential prognostic biomarker and therapeutic target in many cancers. However, no studies have evaluated the clinical significance of MSI2 expression in ACC. Here, we addressed MSI2 expression and its association with ACC prognosis and clinicopathological parameters. MSI2 expression was analyzed in TCGA, GSE12368, GSE33371, and GSE49278 ACC datasets; and its correlation with other genes and immune cell infiltration were investigated by using the R2: Genomics Analysis and Visualization Platform and TIMER databases, respectively. Enrichment analysis was performed with the DAVID Functional Annotation Tool. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were used to explore the prognostic role of MSI2 in ACC. Our findings demonstrated the potential value of MSI2 overexpression as an independent predictor of poor prognosis in patients with completely resected ACC (hazard ratio 6.715, 95% confidence interval 1.266 - 35.620, p =.025). In addition, MSI2 overexpression was associated with characteristics of unfavorable prognosis, such as cortisol excess (p = .002), recurrence (p =.003), and death (p =.015); positively correlated with genes related to steroid biosynthesis (p < .05); and negatively correlated with immune-related pathways (p < .05). Our findings demonstrate that MSI2 has value as a prognostic marker for completely resected ACC and reinforce the investigation of its role as a possible therapeutic target for patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Biomarcadores Tumorais/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias/imunologia , Proteínas de Ligação a RNA/imunologia , Neoplasias do Córtex Suprarrenal/imunologia , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/imunologia , Carcinoma Adrenocortical/mortalidade , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esteroides/imunologia
7.
J Cell Mol Med ; 24(18): 10560-10572, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779876

RESUMO

Our previous studies found overexpression of Musashi2 (MSI2) conduced to the progression and chemoresistance of pancreatic cancer (PC) by negative regulation of Numb and wild type p53 (wtp53). Now, we further investigated the novel signalling involved with MSI2 in PC. We identified inositol-3-phosphate synthase 1 (ISYNA1) as a novel tumour suppressor regulated by MSI2. High MSI2 and low ISYNA1 expression were prevalently observed in 91 PC tissues. ISYNA1 expression was negatively correlated with MSI2 expression, T stage, vascular permeation and poor prognosis in PC patients. What's more, patients expressed high MSI2 and low ISYNA1 level had a significant worse prognosis. And in wtp53 Capan-2 and SW1990 cells, ISYNA1 was downregulated by p53 silencing. ISYNA1 silencing promoted cell proliferation and cell cycle by inhibiting p21 and enhanced cell migration and invasion by upregulating ZEB-1. However, MSI2 silencing upregulated ISYNA1 and p21 but downregulated ZEB-1, which can be rescued by ISYNA1 silencing. Moreover, reduction of cell migration and invasion resulting from MSI2 silencing was significantly reversed by ISYNA1 silencing. In summary, MSI2 facilitates the development of PC through a novel ISYNA1-p21/ZEB-1 pathway, which provides new gene target therapy for PC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Liases Intramoleculares/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias Pancreáticas/patologia , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/fisiologia , Adulto , Idoso , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Movimento Celular , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Liases Intramoleculares/antagonistas & inibidores , Liases Intramoleculares/biossíntese , Liases Intramoleculares/genética , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/biossíntese , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
8.
J Cell Biochem ; 121(2): 1703-1715, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595574

RESUMO

MiR-145 has been shown to suppress cell invasiveness and proliferation in endometriosis, whereas prostate cancer-associated transcript 1 (PCAT1) was reported to act as a sponge of miR-145 with one single-nucleotide polymorphism (SNP), rs710886, located in the chromosomal segment of PCAT1. Therefore, this study aimed to explore the association between rs710886 SNP and the risk of endometriosis, as well as the effect of this SNP on the activation of the signaling pathway downstream of PCAT1. Real-time polymerase chain reaction (PCR) was performed to observe the expression of miR-145 in transfected cells, while Matrigel invasion chamber assays and MTT assay were conducted to examine the invasiveness/proliferation among different cell groups. Moreover, bioinformatics tools, luciferase assays, real-time PCR, and Western blot analysis were used to measure the expression of these target genes in the presence of miR-145. Finally, a statistical analysis was conducted to compare the genotypes of rs710886 SNP between fertile healthy women and infertile women with endometriosis. PCAT1 small interfering RNA (siRNA) evidently increased the expression of miR-145 but reduced the invasiveness/proliferation of cells. P-PCAT1 exhibited an opposite effect as that of PCAT1 siRNA, indicating PCAT1 could promote the proliferation and invasiveness of endometriosis stem cells via inhibiting the expression of miR-145. Meanwhile, FASCIN1, SOX2, MSI2, SERPINE1, and JAM-A were identified as target genes of miR-145 via computational analysis and luciferase assays. Finally, a significant genetic effect was observed in both the dominant (AG+GG vs AA) and recessive models (GG vs AG+AA), indicating the presence of an association between the genotype of SNP rs710886 and the risk of endometriosis. SNP rs710886 A>G could lower the expression of PCAT1, thus leading to the overexpression of miR-145. Highly expressed miR-145 would inhibit the invasiveness and proliferation of endometriosis stem cells via targeting specific genes, thus decreasing the risk of endometriosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Endometriose/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Ciclo Celular , Movimento Celular , Proliferação de Células , Endometriose/genética , Endometriose/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Células Tumorais Cultivadas
9.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408494

RESUMO

Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Doença Aguda , Animais , Humanos , Leucemia/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
10.
Biochem Biophys Res Commun ; 516(1): 278-284, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31253395

RESUMO

The oncogenic roles of ETV4 have been revealed in multiple cancers. However, its expression and functions in lung cancer are rarely explored. Here, we firstly detected the expression of ETV4 in lung adenocarcinoma (LUAD) via online data and local experiment validation. Furthermore, we explored the functions and corresponding mechanisms of ETV4 in LUAD. Upregulation of ETV4 in LUAD is indicated by online data and our results of qPCR, Western blot and immunohistochemistry in collective tissue samples. ETV4 knockdown significantly inhibits proliferation and invasion in LUAD indicated by the outcomes of CCK8, plate clone formation, and Transwell invasion assays. Mechanistically, chromatin immunoprecipitation and luciferase reporter system assays indicated that ETV4 could directly bind at the promoter of MSI2 and promote its transcription. Furthermore, ectopic expression MSI2 can rescue the inhibitory effects caused by ETV4 knockdown in LUAD. Therefore, we proved that upregulation of ETV4 could promote proliferation and invasion of LUAD by transcriptionally upregulating MSI2 offering a potential therapy treatment target of LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas de Ligação a RNA/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Ativação Transcricional , Regulação para Cima
11.
Proc Natl Acad Sci U S A ; 113(25): 6955-60, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274057

RESUMO

Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-ß receptor 1 (TGFßR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFßRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFßR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Claudinas/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Claudinas/fisiologia , Humanos , Camundongos , Metástase Neoplásica
12.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878037

RESUMO

AIM: Musashi 2 (MSI2), which is an RNA-binding protein, plays a fundamental role in the oncogenesis of several cancers. The aim of this study is to investigate the expression of MSI2 in Oral Squamous Cell Carcinoma (OSCC) and evaluate its correlation to clinic-pathological variables and prognosis. MATERIALS AND METHODS: A bioinformatic analysis was performed on data downloaded from The Cancer Genome Atlas (TCGA) database. The MSI2 expression data were analysed for their correlation with clinic-pathological and prognostic features. In addition, an immmunohistochemical evaluation of MSI2 expression on 108 OSCC samples included in a tissue microarray and 13 healthy mucosae samples was performed. RESULTS: 241 patients' data from TCGA were included in the final analysis. No DNA mutations were detected for the MSI2 gene, but a hyper methylated condition of the gene emerged. MSI2 mRNA expression correlated with Grading (p = 0.009) and overall survival (p = 0.045), but not with disease free survival (p = 0.549). Males presented a higher MSI2 mRNA expression than females. The immunohistochemical evaluation revealed a weak expression of MSI2 in both OSCC samples and in healthy oral mucosae. In addition, MSI2 expression directly correlated with Cyclin-D1 expression (p = 0.022). However, no correlation has been detected with prognostic outcomes (overall and disease free survival). CONCLUSIONS: The role of MSI2 expression in OSCC seems to be not so closely correlated with prognosis, as in other human neoplasms. The correlation with Cyclin-D1 expression suggests an indirect role that MSI2 might have in the proliferation of OSCC cells, but further studies are needed to confirm such results.


Assuntos
Carcinoma de Células Escamosas , Ciclina D1/biossíntese , Bases de Dados Factuais , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Proteínas de Ligação a RNA/biossíntese , Caracteres Sexuais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Neoplasias Bucais/metabolismo , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Taxa de Sobrevida
13.
J Cell Physiol ; 233(4): 3262-3273, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884822

RESUMO

RNA-binding proteins (RBP) are important facilitators of post-transcriptional gene regulation. We have previously established that nuclear overexpression of the RBP Musashi-2 (MSI2) during male germ cell maturation is detrimental to sperm cell development and fertility. Herein we determine the genes and pathways impacted by the upregulation of Msi2. Microarray analysis and qPCR confirmed differential gene expression in factors fundamental to the cell cycle, cellular proliferation, and cell death. Similarly, comparative protein expression analysis via iTRAQ, immunoblot, and immunolocalization, identified differential expression and localization of important regulators of transcription, translation, RNA processing, and spermatogenesis. Specifically, the testis-expressed transcription factor, Tbx1, and the piRNA regulator of gamete development, Piwil1, were both found to be targeted for translational repression by MSI2. This study provides key evidence to support a fundamental role for MSI2 in post-transcriptional regulation during male gamete development.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogênese , Proteínas com Domínio T/metabolismo , Animais , Proteínas Argonautas/genética , Regulação da Expressão Gênica , Masculino , Camundongos Transgênicos , Modelos Biológicos , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Espermátides/metabolismo , Espermatogênese/genética , Proteínas com Domínio T/genética
14.
Exp Cell Res ; 361(1): 170-177, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054489

RESUMO

Msi2 has been widely reported to be upregulated and strongly associated with fast progress and poor prognosis in many cancers. However, the expression and role of Msi2 in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we found that Msi2 was upregulated in ESCC clinical samples, and was significantly associated with tumor size, differentiation status, and lymph node metastasis in ESCC patients. Multivariate Cox regression analysis showed that Msi2 was an independent predictor for disease-free survival (DFS) and overall survival (OS). Moreover, knockdown of Msi2 impaired ESCC cell proliferation, epithelial-mesenchymal transition (EMT) and migration, while overexpression of Msi2 promoted ESCC cell proliferation, EMT and migration in vitro. Animal experiments also confirmed that Msi2 promoted ESCC cell proliferation in vivo. Mechanistically, Msi2 promoted ESCC cell proliferation, EMT and migration via regulation of the Wnt/ß-catenin and Hedgehog (Hh) signaling pathways. Taken together, our study suggested that Msi2 could serve as a candidate for diagnosis and prognosis and as a potential therapeutic target in ESCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Wnt1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Proteínas Hedgehog/genética , Humanos , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Wnt1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
15.
Exp Cell Res ; 320(1): 119-27, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24076374

RESUMO

The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proliferação de Células , Células Cultivadas , Células HEK293 , Células HL-60 , Humanos , Células K562 , Células U937
16.
MedComm (2020) ; 5(6): e612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881674

RESUMO

The primary challenge in treating esophageal squamous cell carcinoma (ESCC) is resistance to chemotherapy. Cancer stem cell (CSC) is the root cause of tumor drug resistance. Therefore, targeting CSCs has been considered promising therapeutic strategy for tumor treatment. Here, we report that circMALAT1 was significantly upregulated in ESCC CSC-like cells and primary tumors from ESCC patients. Clinically, there was a positive correlation between circMALAT1 expression and ESCC stage and lymph node metastasis, as well as poor prognosis for ESCC patients. In vitro and in vivo functional studies revealed that circMALAT1 promoted CSC-like cells expansion, tumor growth, lung metastasis and drug resistance of ESCC. Mechanistically, circMALAT1 directly interacted with CSC-functional protein Musashi RNA Binding Protein 2 (MSI2). CircMALAT1 inhibited MSI2 ubiquitination by preventing it from interacting with ß-transducin repeat containing protein (BTRC) E3 ubiquitin ligase. Also, circMALAT1 knockdown inhibited the expression of MSI2-regulating CSC-markers c-Myc in ESCC. Collectively, circMALAT1 modulated the ubiquitination and degradation of the MSI2 protein signaling with ESCC CSCs and accelerated malignant progression of ESCC. CircMALAT1 has the potential to serve as a biomarker for drug resistance and as a target for therapy in CSCs within ESCC.

17.
MedComm (2020) ; 5(5): e548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645664

RESUMO

Identifying new targets for overcoming radioresistance is crucial for improving the efficacy of lung cancer radiotherapy, given that tumor cell resistance is a leading cause of treatment failure. Recent research has spotlighted the significance of Musashi2 (MSI2) in cancer biology. In this study, we first demonstrated that MSI2 plays a key function in regulating the radiosensitivity of lung cancer. The expression of MSI2 is negatively correlated with overall survival in cancer patients, and the knockdown of MSI2 inhibits tumorigenesis and increases radiosensitivity of lung cancer cells. Cellular radiosensitivity, which is closely linked to DNA damage, is influenced by MSI2 interaction with ataxia telangiectasia mutated and Rad3-related kinase (ATR) and checkpoint kinase 1 (CHK1) post-irradiation; moreover, knockdown of MSI2 inhibits the ATR-mediated DNA damage response pathway. RNA-binding motif protein 17 (RBM17), which is implicated in DNA damage repair, exhibits increased interaction with MSI2 post-irradiation. We found that knockdown of RBM17 disrupted the interaction between MSI2 and ATR post-irradiation and increased the radiosensitivity of lung cancer cells. Furthermore, we revealed the potential mechanism of MSI2 recruitment into the nucleus with the assistance of RBM17 to activate ATR to promote radioresistance. This study provides novel insights into the potential application of MSI2 as a new target in lung cancer radiotherapy.

18.
Genes (Basel) ; 14(4)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37107676

RESUMO

Adenocarcinoma of the esophagus (EAC) and gastroesophageal junction (GEJ-AC) is associated with poor prognosis, treatment resistance and limited systemic therapeutic options. To deeply understand the genomic landscape of this cancer type, and potentially identify a therapeutic target in a neoadjuvant chemotherapy non-responder 48-year-old man, we adopted a multi-omic approach. We simultaneously evaluated gene rearrangements, mutations, copy number status, microsatellite instability and tumor mutation burden. The patient displayed pathogenic mutations of the TP53 and ATM genes and variants of uncertain significance of three kinases genes (ERBB3, CSNK1A1 and RPS6KB2), along with FGFR2 and KRAS high copy number amplification. Interestingly, transcriptomic analysis revealed the Musashi-2 (MSI2)-C17orf64 fusion that has never been reported before. Rearrangements of the RNA-binding protein MSI2 with a number of partner genes have been described across solid and hematological tumors. MSI2 regulates several biological processes involved in cancer initiation, development and resistance to treatment, and deserves further investigation as a potential therapeutic target. In conclusion, our extensive genomic characterization of a gastroesophageal tumor refractory to all therapeutic approaches led to the discovery of the MSI2-C17orf64 fusion. The results underlie the importance of deep molecular analyses enabling the identification of novel patient-specific markers to be monitored during therapy or even targeted at disease evolution.


Assuntos
Adenocarcinoma , Masculino , Humanos , Pessoa de Meia-Idade , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Junção Esofagogástrica/metabolismo , Junção Esofagogástrica/patologia , Proteínas de Ligação a RNA/genética
19.
Cell Signal ; 111: 110869, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633478

RESUMO

OBJECTIVE: The objective of this study is to determine how Musashi-2 (MSI2) affects vascular smooth muscle cell (VSMC) phenotypic switch and contributes to atherosclerosis (AS). METHODS: Primary mouse VSMCs were transfected with MSI2 specific siRNA and treated with platelet-derived growth factor-BB (PDGF-BB). The proliferation, cell-cycle, and migration of VSMCs were determined by CCK-8, flow cytometry, wound healing, and transwell assays. Western blot and qRT-PCR were conducted to analyze the protein and mRNA expression. Moreover, the correlation between MSI2, Fbxo6, Rnaset2, and chemokine signaling was predicted and verified using RNAct database, KEGG, wiki, RNA-binding protein immunoprecipitation and co-immunoprecipitation. Moreover, H&E and Oil Red O staining were employed for assessing necrotic core and lipid accumulation in AS mouse aorta tissues. The numbers of B lymphocytes and monocytes, and the levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDL-C) in AS mice blood were investigated using flow cytometry and corresponding commercial kits, respectively. RESULTS: MSI2 was up-regulated in the PDGF-BB-treated VSMCs. Knockdown of MSI2 inhibited VSMC proliferation, cell-cycle, and migration. Moreover, MSI2 regulated VSMC phenotypic switch through binding with Fbxo6 to induce Rnaset2 ubiquitination. MSI2 knockdown inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. In AS mice, knockdown of MSI2 inhibited the formation of necrotic core and atherosclerotic plaque, and inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. CONCLUSION: Our findings demonstrated that MSI2 could bind with Fbxo6 to induce Rnaset2 ubiquitination and the activation of chemokine signaling pathway during VSMC phenotypic switch in AS.


Assuntos
Aterosclerose , Músculo Liso Vascular , Animais , Camundongos , Aterosclerose/metabolismo , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocinas/metabolismo , Colesterol/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais
20.
J Agric Food Chem ; 71(50): 20359-20371, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059915

RESUMO

The regulation of fatty acid metabolism is crucial for milk flavor and quality. Therefore, it is important to explore the genes that play a role in fatty acid metabolism and their mechanisms of action. The RNA-binding protein Musashi2 (MSI2) is involved in the regulation of numerous biological processes and plays a regulatory role in post-transcriptional translation. However, its role in the mammary glands of dairy cows has not been reported. The present study examined MSI2 expression in mammary glands from lactating and dry milk cows. Experimental results in bovine mammary epithelial cells (BMECs) showed that MSI2 was negatively correlated with the ability to synthesize milk fat and that MSI2 decreased the content of unsaturated fatty acids (UFAs) in BMECs. Silencing of Msi2 increased triglyceride accumulation in BMECs and increased the proportion of UFAs. MSI2 affects TAG synthesis and milk fat synthesis by regulating fatty acid synthase (FASN). In addition, RNA immunoprecipitation experiments in BMECs demonstrated for the first time that MSI2 can bind to the 3'-UTR of FASN mRNA to exert a regulatory effect. In conclusion, MSI2 affects milk fat synthesis and fatty acid metabolism by regulating the triglyceride synthesis and UFA content through binding FASN.


Assuntos
Ácidos Graxos , Lactação , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Glândulas Mamárias Animais/metabolismo , Ácidos Graxos Insaturados/metabolismo , Leite/química , Triglicerídeos/metabolismo , Ácido Graxo Sintases/genética , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA