Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Genet ; 40(3): 213-227, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320882

RESUMO

Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Genótipo , Mudança Climática
2.
Proc Natl Acad Sci U S A ; 121(42): e2308605121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39374392

RESUMO

The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Recifes de Corais , Peixes , Animais , Peixes/fisiologia , Conservação dos Recursos Naturais/métodos , Humanos
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012982

RESUMO

Antarctica, an isolated and long considered pristine wilderness, is becoming increasingly exposed to the negative effects of ship-borne human activity, and especially the introduction of invasive species. Here, we provide a comprehensive quantitative analysis of ship movements into Antarctic waters and a spatially explicit assessment of introduction risk for nonnative marine species in all Antarctic waters. We show that vessels traverse Antarctica's isolating natural barriers, connecting it directly via an extensive network of ship activity to all global regions, especially South Atlantic and European ports. Ship visits are more than seven times higher to the Antarctic Peninsula (especially east of Anvers Island) and the South Shetland Islands than elsewhere around Antarctica, together accounting for 88% of visits to Southern Ocean ecoregions. Contrary to expectations, we show that while the five recognized "Antarctic Gateway cities" are important last ports of call, especially for research and tourism vessels, an additional 53 ports had vessels directly departing to Antarctica from 2014 to 2018. We identify ports outside Antarctica where biosecurity interventions could be most effectively implemented and the most vulnerable Antarctic locations where monitoring programs for high-risk invaders should be established.


Assuntos
Ecossistema , Navios , Meios de Transporte , Regiões Antárticas , Geografia , Espécies Introduzidas
4.
Glob Chang Biol ; 30(3): e17240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511480

RESUMO

Marine protected areas (MPAs) are important conservation tools that confer ecosystem benefits by removing fishing within their borders to allow stocks to rebuild. Fishing mortality outside a traditionally fixed MPA can exert selective pressure for low movement alleles, resulting in enhanced protection. While evolving to move less may be useful for conservation presently, it could be detrimental in the face of climate change for species that need to move to track their thermal optimum. Here, we build a spatially explicit simulation model to assess the impact of movement evolution in and around static MPAs resulting from both fishing mortality and temperature-dependent natural mortality on conservation benefits across five climate scenarios: (i) linear mean temperature shift, (ii) El Niño/La Niña conditions, (iii) heat waves, (iv) heatwaves with a mean temperature shift, and (v) no climate change. While movement evolution allows populations within MPAs to survive longer, we find that over time, climate change degrades the benefits by selecting for higher movement genotypes. Resulting population declines within MPAs are faster than expected based on climate mortality alone, even within the largest MPAs. Our findings suggest that while static MPAs may conserve species for a time, other strategies, such as dynamic MPA networks or assisted migration, may also be required to effectively incorporate climate change into conservation planning.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Temperatura , Peixes , Pesqueiros
5.
Conserv Biol ; 38(4): e14272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38622959

RESUMO

Funding decisions influence where, how, and by whom conservation is pursued globally. In the context of growing calls for more participatory, Indigenous-led, and socially just conservation, we undertook the first empirical investigation of how philanthropic foundations working in marine conservation globally engage communities in grant-making decisions. We paid particular attention to whether and how community engagement practices reinforce or disrupt existing power dynamics. We conducted semistructured remote interviews with 46 individuals from 32 marine conservation foundations to identify how conservation foundations engage communities in setting their priorities and deciding which organizations and projects to fund. We found that community engagement in foundation decision-making was limited in practice. Eleven of the 32 foundations reported some form of community engagement in funding decisions. Two of these foundations empowered communities to shape funding priorities and projects through strong forms of engagement. Many engagement practices were one way, one time, or indirect and confined to certain points in decision-making processes. These weaker practices limited community input and reinforced unequal power relations, which may undermine the legitimacy, equity, and effectiveness of conservation efforts. We suggest that foundations aim for stronger forms of community engagement and reflect on how their grant-making practices affect power relations between foundations and communities.


Participación comunitaria y dinámicas de poder en la concesión de subsidios para la filantropía de la conservación Resumen Realizamos la primera investigación empírica sobre la forma en que las fundaciones filantrópicas que trabajan con la conservación marina a nivel mundial involucran a las comunidades en las decisiones para la concesión de subsidios. Prestamos especial atención a cómo y si las prácticas de participación ciudadana refuerzan o interrumpen las dinámicas de poder existentes. Entrevistamos de forma remota a 46 individuos de 32 fundaciones de conservación marina para identificar cómo las fundaciones de conservación involucran a las comunidades para establecer sus prioridades y decidir cuáles organizaciones y proyectos financiar. Encontramos que la participación comunitaria en las decisiones de financiamiento estaba limitada en la práctica. Once de las 32 fundaciones reportaron algún tipo de participación ciudadana en sus decisiones de financiamiento. Dos de estas fundaciones empoderaron a las comunidades para que formaran las prioridades de financiamiento y a los proyectos por medio de una participación sólida. Muchas de las prácticas de participación eran de una manera, de una vez o indirectas y confinadas a ciertos puntos en el proceso de decisión. Estas prácticas más débiles limitaron la aportación comunitaria y reforzaron las relaciones desiguales de poder, lo que puede debilitar la legitimidad, equidad y eficiencia de los esfuerzos de conservación. Sugerimos que las fundaciones busquen maneras más sólidas de involucrar a la comunidad y reflexionen sobre el efecto de sus prácticas de concesión de subsidios sobre las relaciones de poder entre las fundaciones y las comunidades.


Assuntos
Participação da Comunidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/economia , Tomada de Decisões , Obtenção de Fundos , Organização do Financiamento
6.
Conserv Biol ; : e14293, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766900

RESUMO

Despite increasing efforts and investment in mangrove conservation, mangrove cover continues to decline globally. The extent to which protected area (PA) management effectively prevents mangrove loss globally across differing management objectives and governance types is not well understood. We combined remote sensing data with PA information to identify the extent and the drivers of mangrove loss across PAs with distinct governance types and protection levels based on categories developed by the International Union for Conservation of Nature (IUCN). Mangrove loss due to storms and erosion was prevalent across all governance types and most IUCN categories. However, the extent of human-driven loss differed across governance types and IUCN categories. Loss was highest in national government PAs. Private, local, shared arrangement, and subnational government agencies had low human-driven mangrove loss. Human-driven loss was highest in PAs with the highest level of restrictions on human activities (IUCN category I) due to mangrove conversion to areas for commodity production (e.g., aquaculture), whereas PAs that allowed sustainable resource use (e.g., category VI) experienced low levels of human-driven mangrove loss. Because category I PAs with high human-driven loss were primarily governed by national government agencies, conservation outcomes in highly PAs might depend not only on the level of restrictions, but also on the governance type. Mangrove loss across different governance types and IUCN categories varied regionally. Specific governance types and IUCN categories thus seemed more effective in preventing mangrove loss in certain regions. Overall, we found that natural drivers contributed to global mangrove loss across all PAs, whereas human-driven mangrove loss was lowest in PAs with subnational- to local-level governance and PAs with few restrictions on human activities.


Factores globales en la pérdida de manglares en las áreas protegidas Resumen A pesar del incremento en los esfuerzos e inversión de la conservación de los manglares, su cobertura sigue disminuyendo en todo el mundo. No se conoce muy bien el grado al que el manejo de las áreas protegidas (AP) previene eficientemente la pérdida mundial de los manglares en los diferentes objetivos de manejo y tipos de gestión. Combinamos los datos de teledetección con información de las AP para identificar el grado y los factores de la pérdida de manglares en las AP con tipos de gestión claros y niveles de protección basados en las categorías desarrolladas por la Unión Internacional para la Conservación de la Naturaleza (UICN). La pérdida por tormentas y erosión fue común en todos los tipos de gestión y en la mayoría de las categorías de la UICN. Sin embargo, el grado de pérdida antropogénica difirió entre los tipos de gestión y las categorías de la UICN. La pérdida fue mayor en las AP de gobiernos nacionales. Las agencias privadas, locales, de acuerdo compartido y las gubernamentales subnacionales tuvieron una pérdida antropogénica baja. La pérdida antropogénica fue mayor en la AP con el nivel más alto de restricción para las actividades humanas (categoría I de la UICN) debido a la conversión del manglar en áreas de producción de mercancía (p. ej.: acuacultura), mientras que las AP que permiten el uso sostenible de los recursos (p. ej.: categoría VI) tuvieron niveles bajos de pérdida antropogénica. Ya que las AP de categoría I con mayor pérdida antropogénica están gestionadas principalmente por agencias gubernamentales, puede que los resultados de conservación en las AP con mayor pérdida dependan no sólo del nivel de restricciones sino también del tipo de gestión. La pérdida del manglar en los diferentes tipos de gestión y en las categorías de la UICN varió en cada región. Por lo tanto, los tipos específicos de gestión y las categorías de la UICN parecen ser más eficientes en la prevención de la pérdida de manglares en ciertas regiones. En general, encontramos que los factores naturales contribuyen a la pérdida mundial del manglar en todas las AP, mientras que la pérdida antropogénica fue más baja en las AP con un nivel de subnacional a local de gestión y en las AP con pocas restricciones para la actividad humana.

7.
J Environ Manage ; 351: 119815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100861

RESUMO

Although the marine megafauna often strands on beaches around the world, such as sea turtles and whales, stranding data are poorly managed and incorporated into management and conservation strategies. Here we use a knowledge value chain framework to call attention for the urgent need to improve our data architecture and knowledge management on marine megafauna strandings. We use Brazil, a continental megadiverse federative republic, as study model. After describing the main components and identifying the strengths and weaknesses of the current Brazilian data architecture, we propose 10 practical measures for its improvement involving researchers, companies, non-governmental organizations, legislators, policy makers, public agents, citizen scientists, and local communities. Although Brazil has notable strengths such as comprehensive environmental legislation, hundreds of scientists and dozens of prestigious research institutions, stranding data is not translated into technical-scientific knowledge; technical-scientific knowledge is not transformed into effective public regulations; deficient regulations lead to bad decisions and limited actions, which in turn result in ineffective management and conservation strategies. In light of the UN Decade of Ocean Science for Sustainable Development (2021-2030), we propose (1) expanding standardized beach monitoring projects to the entire Brazilian coast; (2) creating a governmental database with FAIR principles; (3) encouraging the development of broad citizen science initiatives; (4) funding scientists and research institutions; (5) boosting outreach activities among researchers to popularize the scientific knowledge; (6) raising awareness among legislators and policy makers on the problem of strandings; (7) updating the existing legal provisions on the environmental licensing of activities developed at sea; (8) hiring new environmental analysts and inspectors and improving the infrastructure of executing environmental agencies; (9) strengthening existing conservation networks with multiple stakeholders; and (10) making the results of the management and conservation strategies broadly accessible to society. These recommendations may also apply to other coastal countries around the world.


Assuntos
Gestão do Conhecimento , Organizações , Desenvolvimento Sustentável , Brasil
8.
Environ Manage ; 73(3): 646-656, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103092

RESUMO

Marine Citizen Science (MCS) has emerged as a promising tool to enhance conservation efforts. Although the quality of volunteer data has been questioned, the design of specific protocols, effective training programs, and data validation by experts have enabled us to overcome these quality concerns, thus ensuring data reliability. Here, we validated the effectiveness of volunteer training in assessing the conservation status of Mediterranean coral species. We conducted a comparative analysis of data collected by volunteers with different levels of expertise, demonstrating improvements in data precision and accuracy with only one training session, thereby achieving values equivalent to those obtained by scientists. These outcomes align with the feedback received from volunteers through a qualitative survey. Finally, we analysed the data generated by volunteers and validated by experts using the developed protocol in the Coral Alert project from the Observadores del Mar MCS initiative. Our findings highlight the importance of proper training, expert validation, robust sampling protocols, and a well-structured platform to ensure the success of long-term MCS projects. Overall, our results stress the key role MCS plays in enhancing the conservation and management strategies designed to mitigate the ongoing environmental crisis.


Assuntos
Antozoários , Ciência do Cidadão , Animais , Humanos , Reprodutibilidade dos Testes , Voluntários , Inquéritos e Questionários
9.
Conserv Biol ; 37(5): e14090, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246556

RESUMO

To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2-3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.


Estado en la lista roja y riesgo de extinción de las ballenas, delfines y marsopas del mundo Resumen Para comprender el alcance y la escala de la pérdida de biodiversidad, se necesitan herramientas que puedan aplicarse de forma estandarizada a todas las especies a nivel mundial y que abarquen todos los ámbitos desde la tierra hasta el océano. Utilizamos datos de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza para proporcionar una síntesis del estado de conservación y el riesgo de extinción de los cetáceos. Una de cada 4 especies de cetáceos (26% de 92 especies) se encuentra amenazada (es decir, en peligro crítico, en peligro o vulnerable) y el 11% de las especies está clasificado como casi amenazada. El 10% de las especies de cetáceos carecía de datos, por lo que predijimos que 2-3 de estas especies también podrían estar amenazadas. La proporción de cetáceos amenazados ha aumentado: 15% en 1991, 19% en 2008 y 26% en 2021. El estado de conservación evaluado del 20% de las especies ha empeorado de 2008 a 2021, pues sólo 3 pasaron a categorías de menor amenaza. Las especies de cetáceos con áreas de distribución geográficas pequeñas tenían más probabilidades de ser catalogadas como amenazadas que aquellas con áreas de distribución extensas, y aquellas que ocurren en hábitats de agua dulce (100% de las especies) y costeros (60% de las especies) eran las que se encontraban bajo mayor amenaza. La superposición de los mapas de distribución de las especies reveló la existencia de puntos calientes de pequeños cetáceos amenazados en el sudeste asiático y en una zona que abarca el Triángulo de Coral y se extiende por las aguas cercanas a la costa de la Bahía de Bengala, el norte de Australia, Papúa Nueva Guinea y las aguas costeras de China. Urge mejorar la gestión de las pesquerías para limitar la sobrepesca y reducir la captura accesoria con el fin de evitar extinciones o mayores descensos, especialmente en las zonas costeras de Asia, África y Sudamérica.


Assuntos
Golfinhos , Toninhas , Animais , Conservação dos Recursos Naturais , Extinção Biológica , Baleias , Pesqueiros , Biodiversidade , Espécies em Perigo de Extinção
10.
Glob Chang Biol ; 28(19): 5708-5725, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848527

RESUMO

Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change.


Assuntos
Organismos Aquáticos , Ecossistema , Mudança Climática , Mar Mediterrâneo
11.
Glob Chang Biol ; 28(23): 7139-7153, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168958

RESUMO

Human populations near ecosystems are used as both a proxy for dependency on ecosystems, and conversely to estimate threats. Consequently, the number of people living near coral reefs is often used in regional coral reef management, evaluation of risk at regional and global scales, and even considerations of funding needs. Human populations and their statistics, are ever-changing and data relating to coral reefs have not been updated regularly. Here, we present an up-to-date analysis of the abundance, and density of people living within 5-100 km of coral reef ecosystems along with population proportion, using freely available data sets and replicable methods. We present trends of changes in human populations living near coral reefs over a 20-year time period (2000-2020), divided by region and country, along with socio-economic denominations such as country income category and Small Island Developing States (SIDS). We find that across 117 coral reef countries there are currently close to a billion people living within 100 km of a coral reef (~13% of the global population) compared with 762 million people in 2000. Population growth by coral reefs is higher than global averages. The Indian Ocean saw a 33% increase in populations within 100 km of a coral reef and 71% at 5 km. There are 60 countries with 100% of their population within 100 km of coral reefs. In SIDS, the proportion of the total population within 100 km of a coral reef is extremely high: 94% in 2020. Population density 5-10 km from coral reefs is 4× the global average. From 5 to 100 km, more people from lower-middle-income countries live by coral reefs than any other income category. Our findings provide the most up-to-date and extensive statistics on the regional and nation-level differences in population trends that play a large role in coral reef health and survival.


Assuntos
Antozoários , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Ecossistema
12.
Ecol Appl ; 32(7): e2643, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35470930

RESUMO

The incidence of emerging infectious diseases (EIDs) has increased in wildlife populations in recent years and is expected to continue to increase with global environmental change. Marine diseases are relatively understudied compared with terrestrial diseases but warrant parallel attention as they can disrupt ecosystems, cause economic loss, and threaten human livelihoods. Although there are many existing tools to combat the direct and indirect consequences of EIDs, these management strategies are often insufficient or ineffective in marine habitats compared with their terrestrial counterparts, often due to fundamental differences between marine and terrestrial systems. Here, we first illustrate how the marine environment and marine organism life histories present challenges and opportunities for wildlife disease management. We then assess the application of common disease management strategies to marine versus terrestrial systems to identify those that may be most effective for marine disease outbreak prevention, response, and recovery. Finally, we recommend multiple actions that will enable more successful management of marine wildlife disease emergencies in the future. These include prioritizing marine disease research and understanding its links to climate change, improving marine ecosystem health, forming better monitoring and response networks, developing marine veterinary medicine programs, and enacting policy that addresses marine and other wildlife diseases. Overall, we encourage a more proactive rather than reactive approach to marine wildlife disease management and emphasize that multidisciplinary collaborations are crucial to managing marine wildlife health.


Assuntos
Doenças Transmissíveis Emergentes , Ecossistema , Animais , Animais Selvagens , Organismos Aquáticos , Mudança Climática , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária
13.
Biol Lett ; 18(2): 20210439, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104425

RESUMO

According to the theory of compensatory dynamics, depleted populations should recover when the threat responsible for their decline is removed because per capita population growth is assumed to be highest when populations are at their smallest viable sizes. Yet, many seriously depleted fish populations have failed to recover despite threat mitigation. Atlantic cod (Gadus morhua) stocks off Newfoundland, despite 30 years of dramatically reduced fishing mortality and numerous fishery closures, have not recovered, suggesting that drivers other than fishing can regulate the growth of collapsed fish populations, inhibiting or preventing their recovery. Here, using Bayesian inference, we show strong evidence of Allee effects in a south Newfoundland cod population, based on data on recruitment and spawning stock biomass. We infer the Allee-effect threshold, below which recovery is impaired. We demonstrate the necessity of data at low population sizes to make inferences about the nature of low-abundance dynamics. Our work indicates that Allee effects are not negligible in commercially exploited fish populations, as commonly projected, and that they represent an inhibitory force that can effectively prevent recovery from overfishing. Our findings contrast with prevailing fisheries management practices that assume compensatory dynamics at low abundances with potential to seriously overestimate the recovery potential of collapsed populations.


Assuntos
Gadus morhua , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , Pesqueiros , Gadus morhua/fisiologia , Dinâmica Populacional
14.
Conserv Genet ; 23(6): 995-1010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36397975

RESUMO

Globally distributed marine taxa are well suited for investigations of biogeographic impacts on genetic diversity, connectivity, and population demography. The sea turtle genus Lepidochelys includes the wide-ranging and abundant olive ridley (L. olivacea), and the geographically restricted and 'Critically Endangered' Kemp's ridley (L. kempii). To investigate their historical biogeography, we analyzed a large dataset of mitochondrial DNA (mtDNA) sequences from olive (n = 943) and Kemp's (n = 287) ridleys, and genotyped 15 nuclear microsatellite loci in a global sample of olive ridleys (n = 285). We found that the ridley species split ~ 7.5 million years ago, before the Panama Isthmus closure. The most ancient mitochondrial olive ridley lineage, located in the Indian Ocean, was dated to ~ 2.2 Mya. Both mitochondrial and nuclear markers revealed significant structure for olive ridleys between Atlantic (ATL), East Pacific (EP), and Indo-West Pacific (IWP) areas. However, the divergence of mtDNA clades was very recent (< 1 Mya) with low within- clade diversity, supporting a recurrent extinction-recolonization model for these ocean regions. All data showed that ATL and IWP groups were more closely related than those in the EP, with mtDNA data supporting recent recolonization of the ATL from the IWP. Individual olive ridley dispersal between the ATL, EP, and IN/IWP could be interpreted as more male- than female-biased, and genetic diversity was lowest in the Atlantic Ocean. All populations showed signs of recent expansion, and estimated time frames were concordant with their recent colonization history. Investigating species abundance and distribution changes over time is central to evolutionary biology, and this study provides a historical biogeographic context for marine vertebrate conservation and management. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-022-01465-3.

15.
Mol Ecol ; 30(19): 4608-4629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260775

RESUMO

Oceanographic features such as currents, waves, temperature and salinity, together with life history traits, control patterns and rates of gene flow and contribute to shaping the population genetic structure of marine organisms. Seascape genetics is an emerging discipline that adopts a spatially explicit approach to examine biotic and abiotic factors that drive gene flow in marine environments. In this study, we examined factors that contribute to genetic differentiation in two coastal Mediterranean gastropods whose geographical ranges overlap but which inhabit different environments. The two species differ in several life history traits and in their dispersal capabilities. Genetic differentiation was relatively low for the trochid species Gibbula divaricata (FST  =0.059), and high for the vermetid species Dendropoma lebeche (FST  =0.410). Salinity emerged as the most important variable explaining the genetic structure of both species; sea surface temperature was also important for G. divaricata. For the more sessile D. lebeche, the coastline was predicted to provide important pathways for stepping-stone connectivity and gene flow. Our results provide a greater understanding of the factors influencing marine population connectivity, which may be useful to guide marine conservation and management in the Mediterranean.


Assuntos
Gastrópodes , Fluxo Gênico , Animais , Gastrópodes/genética , Variação Genética , Genética Populacional , Mar Mediterrâneo , Oceanografia
16.
Glob Chang Biol ; 27(4): 728-737, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33111371

RESUMO

The presence of plastic in the environment is generating impacts on all habitats and has become a major global problem in marine megafauna. Macroplastics can cause entanglement, ingestion and loss of suitable habitats. In addition to entanglement problems, there is evidence that plastics are entering the food web through ingestion by marine organisms, which could ultimately be affecting humans. Much of the available information on the impact of plastic in biota is scattered and disconnected due to the use of different methodologies. Here, we review the variety of approaches and protocols followed to assess macro- and microplastic ingestion in marine vertebrates such as sea turtles, cetaceans and fishes in order to offer a global overview of their current status. The analysis of 112 studies indicates the highest plastic ingestion in organisms collected in the Mediterranean and Northeast Indian Ocean with significant differences among plastic types ingested by different groups of animals, including differences in colour and the type of prevalent polymers. In sea turtles, the most prevalent types of plastics are white plastics (66.60%), fibres (54.54%) and LDPE polymer (39.09%); in cetaceans, white macro- and microplastics (38.31%), fibres (79.95%) and PA polymer (49.60%); and in fishes, transparent plastics (45.97%), fibres (66.71%) and polyester polymer (36.20%). Overall, clear fibre microplastics are likely the most predominant types ingested by marine megafauna around the globe.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Ingestão de Alimentos , Monitoramento Ambiental , Cadeia Alimentar , Oceano Índico , Plásticos , Poluentes Químicos da Água/análise
17.
Glob Chang Biol ; 27(23): 6206-6216, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34488246

RESUMO

Marine species are declining at an unprecedented rate, catalyzing many nations to adopt conservation and management targets within their jurisdictions. However, marine species and the biophysical processes that sustain them are naive to international borders. An understanding of the prevalence of cross-border species distributions is important for informing high-level conservation strategies, such as bilateral or regional agreements. Here, we examined 28,252 distribution maps to determine the number and locations of transboundary marine plants and animals. More than 90% of species have ranges spanning at least two jurisdictions, with 58% covering more than 10 jurisdictions. All jurisdictions have at least one transboundary species, with the highest concentrations of transboundary species in the USA, Australia, Indonesia, and the Areas Beyond National Jurisdiction. Distributions of mapped biodiversity indicate that overcoming the challenges of multinational governance is critical for a much wider suite of species than migratory megavertebrates and commercially exploited fish stocks-the groups that have received the vast majority of multinational management attention. To effectively protect marine biodiversity, international governance mechanisms (particularly those related to the Convention on Biological Diversity, the Convention on Migratory Species, and Regional Seas Organizations) must be expanded to promote multinational conservation planning, and complimented by a holistic governance framework for biodiversity beyond national jurisdiction.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Peixes , Oceanos e Mares
18.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015863

RESUMO

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Pesqueiros , Peixes , Oceanos e Mares
19.
Conserv Biol ; 35(6): 1861-1870, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34190357

RESUMO

Marine protected areas (MPAs) cover 3-7% of the world's ocean, and international organizations call for 30% coverage by 2030. Although numerous studies show that MPAs produce conservation benefits inside their borders, many MPAs are also justified on the grounds that they confer conservation benefits to the connected populations that span beyond their borders. A network of MPAs covering roughly 20% of the Channel Islands National Marine Sanctuary was established in 2003, with a goal of providing regional conservation and fishery benefits. We used a spatially explicit bioeconomic simulation model and a Bayesian difference-in-difference regression to examine the conditions under which MPAs can provide population-level conservation benefits inside and outside their borders and to assess evidence of those benefits in the Channel Islands. As of 2017, we estimated that biomass densities of targeted fin-fish had a median value 81% higher (90% credible interval: 23-148) inside the Channel Island MPAs than outside. However, we found no clear effect of these MPAs on mean total biomass densities at the population level: estimated median effect was -7% (90% credible interval: -31 to 23) from 2015 to 2017. Our simulation model showed that effect sizes of MPAs of <30% were likely to be difficult to detect (even when they were present); smaller effect sizes (which are likely to be common) were even harder to detect. Clearly, communicating expectations and uncertainties around MPAs is critical to ensuring that MPAs are effective. We provide a novel assessment of the population-level effects of a large MPA network across many different species of targeted fin-fish, and our results offer guidance for communities charged with monitoring and adapting MPAs.


Las áreas marinas protegidas (AMPs) cubren entre 3-7% de los océanos del planeta y las organizaciones internacionales piden una cobertura del 30% para el 2030. Aunque numerosos estudios muestran que las AMPs producen beneficios de conservación dentro de sus límites, muchas de estas áreas también están justificadas por otorgarles beneficios de conservación a las poblaciones conectadas que abarcan más allá de sus fronteras. Una red de AMPs que cubre aproximadamente el 20% del Santuario Marino Nacional de las Islas del Canal fue establecida en 2003 con el objetivo de proporcionar beneficios para la conservación y las pesquerías regionales. Usamos un modelo de simulación bioeconómica espacialmente explícito y una regresión bayesiana de diferencia-en-diferencia para examinar las condiciones bajo las que las AMPs pueden proporcionar beneficios de conservación a nivel poblacional dentro y fuera de sus límites y para evaluar las evidencias de esos beneficios en las Islas del Canal. Hasta el 2017, estimamos que la densidad de la biomasa de los peces focalizados tuvo un valor medio de 81% (90% intervalo creíble 23-148) dentro de las AMPs de las Islas del Canal que fuera de ellas. Sin embargo, no encontramos un efecto claro de estas AMPs sobre la densidad de biomasa total promedio a nivel poblacional; el efecto medio estimado fue de -7% (90% intervalo creíble -31 - 23) entre 2015 y 2017. Nuestro modelo de simulación mostró que los tamaños del efecto de las AMPs menores al 30% tenían mayor probabilidad de ser difíciles de detectar (incluso cuando estaban presentes); los tamaños de efecto más pequeños (que es probable que sean comunes) fueron incluso más difíciles de detectar. Claramente, es muy importante comunicar las expectativas e incertidumbres en torno a las AMPs para asegurar que éstas sean efectivas. Proporcionamos una evaluación novedosa de los efectos a nivel poblacional de una red extensa de AMPs para muchas especies de peces focalizados y nuestros resultados ofrecen una guía para las comunidades encargadas de monitorear y adaptar las AMPs.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Teorema de Bayes , Peixes
20.
J Invertebr Pathol ; 186: 107524, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33359479

RESUMO

Marine protected areas (MPAs) consist of various categories of safeguarded areas in the marine environment, from semi-protected areas to total no take zones. The reported effects of MPAs are overwhelmingly positive, with numerous reports of fish size (biomass), abundance (recovery) and diversity increases, however, literature is lacking on the role and consequences of MPAs on parasite and disease dynamics, and in particular, invertebrate health. The implementation of MPAs has been known to alter trophic cascades and community dynamics, and with invertebrates commonly at the base of these systems, it is vital that their status is investigated. Overcrowding in areas closed to fishing is known to have parasitological consequences in some scenarios, and land/water use change has been known to alter host and vector communities, possibly elevating disease risk. Equally, reserves can be used as tools for alleviating impacts of marine disease. This review aims to consolidate extant literature and provide a comprehensive viewpoint on how invertebrates (and their health status) can be affected by MPAs, which are increasingly being implemented based on the relative urgency now being placed on protecting global biodiversity. In highlighting the paucity of knowledge surrounding MPAs and disease, especially that of the unenigmatic invertebrate groups, this review, published in the Special Issue on 'Invertebrates as One Health Sentinels', provides an opportunity for wide dissemination and provocation of further research in this area.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Invertebrados/fisiologia , Animais , Pesqueiros , Caça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA