RESUMO
Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.
Assuntos
Ésteres , Populus , Ésteres/metabolismo , Ecossistema , Estresse Fisiológico , Populus/metabolismo , Secas , Folhas de Planta/metabolismo , Metanol/metabolismo , Parede Celular/metabolismo , Água/metabolismo , Ácido Acético/metabolismoRESUMO
Dry MeOH extract of Ferula heuffelii (Apiaceae) underground parts was tested for spasmolytic, gastroprotective and antioxidant activities. HPLC analysis revealed that chlorogenic acid (CGA; 34.6â mg/g) was its main constituent. Extract inâ vitro exhibited notable total antioxidant activity (FRAP value=1.0 µmol Fe2+ /mg), and scavenging of DPPH (SC50 =62.5â µg/ml) and ⢠OH radicals (49.5 % at 20â µg/ml in 2-deoxyribose assay). In vitro on isolated rat ileum, extract exhibited significant spasmolytic activity, i. e., it showed 124.6 % of maximal atropine effect on spontaneous contractions (at 100â µg/ml), and reduced spasmogenic effect of KCl (80â mm) to 44.4 % (at 60â µg/ml) and of highest applied concentration of ACh to 26.3 % (at 120â µg/ml). In parallel experiments, spasmolytic effect of CGA was also demonstrated. In acute EtOH-induced gastric ulceration model in rats, extract (100â mg/kg p.o.) showed significant gastroprotective effect (gastric damage score 0.50), similar to ranitidine (20â mg/kg p.o.). Obtained results showed that tested F. heuffelii polar extract represents new herbal preparation with potential use against some gastrointestinal complaints.
Assuntos
Ferula , Animais , Antioxidantes/farmacologia , Metanol , Parassimpatolíticos/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , RatosRESUMO
An innovative charge-transfer complex between the Schiff base 2-((2-hydroxybenzylidene) amino)-2-(hydroxymethyl) propane-1,3-diol [SAL-THAM] and the π-acceptor, chloranilic acid (CLA) within the mole ratio (1:1) was synthesized and characterized aiming to investigate its electronic transition spectra in acetonitrile (ACN), methanol (MeOH) and ethanol (EtOH) solutions. Applying Job`s method in the three solvents supported the 1:1 (CLA: SAL-THAM) mole ratio complex formation. The formation of stable CT- complex was shown by the highest values of charge-transfer complex formation constants, KCT, calculated using minimum-maximum absorbance method, with the sequence, acetonitrile > ethanol > methanol DFT study on the synthesized CT complex was applied based on the B3LYP method to evaluate the optimized structure and extract geometrical and reactivity parameters. Based on TD-DFT theory, the electronic properties, 1H and 13C NMR, IR, and UV-Vis spectra of the studied system in different solvents showing good agreement with the experimental studies. MEP map described the possibility of hydrogen bonding and charge transfer in the studied system. Finally, a computational approach for screening the antiviral activity of CT - complex towards SARS-CoV-2 coronavirus protease via molecular docking simulation was conducted and confirmed with molecular dynamic (MD) simulation.
RESUMO
Alzheimer's disease is considered the most common cause of dementia and, in an increasingly aging population worldwide, the quest for treatment is a priority. Amaryllidaceae alkaloids are of main interest because of their cholinesterase inhibition potential, which is the main palliative treatment available for this disease. We evaluated the alkaloidal profile and the in vitro inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) of bulb alkaloid extract of Phaedranassa dubia and Phaedranassa brevifolia collected in Ecuador. Using gas chromatography coupled to mass spectrometry (GC-MS), we identified typical Amaryllidaceae alkaloids in these species, highlighting the presence of lycorine-type alkaloids in P. dubia and haemanthamine/crinine-type in P. brevifolia. The species P. dubia and P. brevifolia showed inhibitory activities against AChE (IC50 values of 25.48 ± 0.39 and 3.45 ± 0.29 µg.mL-1, respectively) and BuChE (IC50 values of 114.96 ± 4.94 and 58.89 ± 0.55 µg.mL-1, respectively). Computational experiments allowed us to understand the interactions of the alkaloids identified in these samples toward the active sites of AChE and BuChE. In silico, some alkaloids detected in these Amaryllidaceae species presented higher estimated binding free energy toward BuChE than galanthamine. This is the first study about the alkaloid profile and biological potential of P. brevifolia species.
RESUMO
The genus Millettia belongs to Fabaceae includes 200 species which are distributed in tropical and subtropical regions of the world. Plants belong to this genus are used as folkloric medicine, for the treatment of different ailments like in wound healing, boil, sores, skin diseases, snake bite, muscle aches, pains, rheumatic arthritis, and gynaecological diseases. The aim of the review is to provide updated, comprehensive and categorized information on the aspects of ethnobotanical, phytochemical, pharmacological uses and toxicity of genus Millettia in order to identify their therapeutic potential and generate space for future research opportunities. The present study comprises of isolated flavonoids, phenolic compounds, phytosterols, saponins, alkaloids, polysaccharides, terpenoids and resins and pharmacological activities of various Millettia species. The relevant data were searched by using the keyword "Millettia" in different scientific databases like, "Google Scholar"; "NISCAIR repository"; "Pub Med"; "Science Direct"; "Scopus" and the taxonomy is validated by "The Plant List". This review discusses the existing information of the traditional evaluation as well as phytochemical and pharmacological evaluation of the extract and active constituents of the genus "Millettia". This review confirms that several Millettia species have emerged as a high-quality medicine in a traditional system for arthritis, wound healing, inflammation, skin diseases. Numerous conventional uses of Millettia species have been validated by modern pharmacology research. Intensive investigations of the genus Millettia relating to phytochemistry and pharmacology, especially their mechanism of action, safety, and efficacy could be the future research interests by the researcher in the area of phytomedicine.
RESUMO
An efficient and robust method to measure vitamin D (25-hydroxy vitamin D3 (25(OH)D3) and 25-hydroxy vitamin D2 in dried blood spots (DBS) has been developed and applied in the pan-European multi-centre, internet-based, personalised nutrition intervention study Food4Me. The method includes calibration with blood containing endogenous 25(OH)D3, spotted as DBS and corrected for haematocrit content. The methodology was validated following international standards. The performance characteristics did not reach those of the current gold standard liquid chromatography-MS/MS in plasma for all parameters, but were found to be very suitable for status-level determination under field conditions. DBS sample quality was very high, and 3778 measurements of 25(OH)D3 were obtained from 1465 participants. The study centre and the season within the study centre were very good predictors of 25(OH)D3 levels (P<0·001 for each case). Seasonal effects were modelled by fitting a sine function with a minimum 25(OH)D3 level on 20 January and a maximum on 21 July. The seasonal amplitude varied from centre to centre. The largest difference between winter and summer levels was found in Germany and the smallest in Poland. The model was cross-validated to determine the consistency of the predictions and the performance of the DBS method. The Pearson's correlation between the measured values and the predicted values was r 0·65, and the sd of their differences was 21·2 nmol/l. This includes the analytical variation and the biological variation within subjects. Overall, DBS obtained by unsupervised sampling of the participants at home was a viable methodology for obtaining vitamin D status information in a large nutritional study.
Assuntos
Avaliação Nutricional , Estado Nutricional , Papel , Kit de Reagentes para Diagnóstico , Deficiência de Vitamina D/sangue , 25-Hidroxivitamina D 2/sangue , Adolescente , Adulto , Idoso , Calcifediol/sangue , Calibragem , Dessecação , Dietoterapia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Consulta Remota/métodos , Reprodutibilidade dos Testes , Estações do Ano , Sensibilidade e EspecificidadeRESUMO
The genus Centaurea L. is one of the largest and important genera of Asteraceae family. Centaurea species have been widely used as herbal remedies in folk medicine for their antidandruff, antidiarrheic, antirheumatic, anti-inflammatory, choleretic, diuretic, digestive, stomachic, astringent, antipyretic, cytotoxic, and antibacterial properties. Centaurea baseri Kose & Alan is a recently described local endemic species in Turkey and this is the first study on the chemical composition and bioactivity of its hydrodistilled essential oil and the crude extract. According to chromatospectral analysis, hexadecanoic acid (42.3%), nonacosane (8.2%), and heptacosane (8.0%) were the main compounds of the essential oil, while 16 compounds were determined in the MeOH extract using LC/MS. Furthermore, antimicrobial, antioxidant, and cytotoxic effects of the essential oil and the extract were evaluated in comparison with the standard agents. The extract showed strong antifungal effect against Candida utilis at the concentration of 60 µg/ml (MIC) where the EO showed growth inhibition at the concentration of 47.00 µg/ml (MIC) against pathogen Bacillus cereus. Both the essential oil and the extract did not show any selective antioxidant properties. The extract showed remarkably selective cytotoxic properties against MCF-7, PANC-1, A549, and C6 glioma cells.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Centaurea/química , Centaurea/classificação , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Especificidade da Espécie , Relação Estrutura-Atividade , TurquiaRESUMO
The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5â µg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5â µg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2â µM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5â µM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2â µM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0â µg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75µM).
Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Ferula/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Antibacterianos/química , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ferula/metabolismo , Células HeLa , Humanos , Células K562 , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Relação Estrutura-AtividadeRESUMO
CONTEXT: Hyperlipidemia is known to be a major risk factor for the development of cardiovascular diseases (CVDs) which include atherosclerosis, coronary heart disease, and stroke. Although there are a large number of anti-hyperlipidemic drugs available, unfortunately, they all have side effects. OBJECTIVE: Terminalia chebula Retz. (Combretaceae) is a plant used to treat cardiac disorders in the traditional Ayurveda medicine in India. The objective of this study was to assess the anti-hyperlipidemic properties of a methanol (MeOH) bark extract of T. chebula. MATERIALS AND METHODS: Acute toxicity studies were performed according to the Organisation for Economic Cooperation and Development (OECD) guideline no. 423 using various doses (5, 50, 300, and 2000 mg/kg) of T. chebula bark. Anti-hyperlipidemic effect of MeOH bark extract of T. chebula at doses of 200, 400, and 600 mg/kg and fasting glucose levels after treatment with MeOH bark extract of T. chebula at doses of 200, 400, and 600 mg/kg were analyzed using commercially available kits. RESULTS: Acute toxicity studies did not show any morbidity and mortality at various doses. The MeOH extract of T. chebula bark at doses of 200, 400, and 600 mg/kg significantly lowered serum cholesterol and triglyceride levels. Moreover, the extract of T. chebula and the positive control atorvastatin-treated groups of animals showed a significant increase in the serum high-density lipoprotein (HDL) cholesterol levels in diet-induced hypercholesterolemic animals. CONCLUSION: The overall results confirm that the bark extract of T. chebula possesses significant anti-hyperlipidemic activity.
Assuntos
Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Metanol/uso terapêutico , Casca de Planta , Extratos Vegetais/uso terapêutico , Terminalia , Animais , Hiperlipidemias/sangue , Hiperlipidemias/patologia , Hipolipemiantes/isolamento & purificação , Masculino , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Resultado do TratamentoRESUMO
Gastroesophageal reflux disease has been implicated in the pathogenesis of adenocarcinoma of the oesophagus. The same applies to laryngopharyngeal reflux (LPR) and squamous cell cancer of the head and neck, but so far, this link has not been proven. The impact of low pH and bile acids has not been studied extensively in cells other than oesophageal cancer cell lines and tissue. The aims of this study were to investigate the pathogenic potential of reflux and its single components on the mucosa of the upper respiratory tract. We measured DNA stability in human miniorgan cultures (MOCs) and primary epithelial cell cultures (EpCs) in response to reflux by the alkaline comet assay. As matrix metalloproteinases (MMPs) are involved in extracellular matrix remodelling processes and may contribute to cancer progression, we studied the expression of MMP1, -9, and -14 in MOCs, EpC, UM-SCC-22B, and FADUDD. DNA strand breaks (DNA-SBs) increased significantly at low pH and after incubation with human or artificial gastric juice. Single incubation with glycochenodeoxycholic acid also showed a significant increase in DNA-SBs. In epithelial cell cultures, human gastric juice increased the number of DNA-SBs at pH 4.5 and 5.5. Artificial gastric juice significantly up regulated the gene expression of MMP9. Western blot analysis confirmed the results of gene expression analysis, but the up regulation of MMP1, -9, and -14 was donor-specific. Reflux has the ability to promote genomic instability and may contribute to micro environmental changes suitable for the initiation of malignancy. Further functional gene analysis may elucidate the role of laryngopharyngeal reflux in the development of head neck squamous cell carcinoma (HNSCC).
Assuntos
Carcinoma de Células Escamosas/metabolismo , Dano ao DNA , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , DNA/genética , Dano ao DNA/fisiologia , Células Epiteliais/metabolismo , Esôfago/metabolismo , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/metabolismo , Genes/fisiologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Células Tumorais CultivadasRESUMO
The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.
Assuntos
Dióxido de Carbono , Metanol , Metanol/química , CatáliseRESUMO
Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6h later in embryonic ROS formation, measured by 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2'-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde.
Assuntos
Glutationa/farmacologia , Metanol/toxicidade , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Aldeído Oxirredutases/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Óxidos N-Cíclicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Radicais Livres/metabolismo , Masculino , Metionina Sulfoximina/análogos & derivados , Metionina Sulfoximina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Teratogênicos/toxicidadeRESUMO
3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4ß2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4ß2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents.
Assuntos
Alcanos/química , Compostos Bicíclicos com Pontes/química , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Alcanos/farmacologia , Animais , Compostos Bicíclicos com Pontes/farmacologia , Bovinos , Linhagem Celular , Ligação de Hidrogênio , Ligantes , Camundongos , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Ratos , Receptores Nicotínicos/química , Relação Estrutura-Atividade , Torpedo , XenopusRESUMO
3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4ß2(∗) nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4ß2(∗) nAChR. All evaluated compounds are partial agonists or antagonists at α4ß2(∗), with reduced or no effects on α3ß4(∗) with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes.
Assuntos
Alcanos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Alcanos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Camundongos , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Relação Estrutura-AtividadeRESUMO
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Assuntos
Gônadas/metabolismo , Proteômica/métodos , Proteínas de Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/crescimento & desenvolvimento , Masculino , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Testículo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Fabry disease (FD) is an inherited disease caused by deficient α-galactosidase A activity that is characterized by the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Although plasma lyso-Gb3 is a sensitive biomarker of FD, the correlation between its concentration and clinical symptoms remains unclear. To clarify the influence of plasma Gb3 and lyso-Gb3 in a symptomatic Gla tm Tg(CAG-A4GALT) FD mouse model, the total contents of Gb3, lyso-Gb3 and their analogs in various organs and plasma were determined in mice with early- (5-week-old) and late-stage (20-week-old) renal dysfunction. A marked increase in total Gb3 content in the heart, kidneys, spleen, liver, small intestine, lungs, brain, and plasma was observed in the 20-week-old mice compared to that in 5-week-old mice. In contrast, the increase in lyso-Gb3 was relatively small, and the total content in the lungs and plasma was unchanged. Lyso-Gb3 analogs {lyso-Gb3(-2) and lyso-Gb3(+18)} and Gb3 analogs {Gb3(-2) and Gb3(+18)} were observed in all organs and plasma at both ages, and the percentages of the analogs were unique to specific organs. The pattern of 37 Gb3 analogs/isoforms of liver Gb3 corresponded well with that of plasma Gb3. Although the analog pattern of plasma lyso-Gb3 did not resemble that of any organ lyso-Gb3, the relative content {lyso-Gb3: lyso-Gb3(-2)} in the sum of all organs corresponded well to that of the plasma at both ages. These data indicate that liver Gb3 may contribute to the plasma Gb3 level, while plasma lyso-Gb3 may be released from all organs, and the capacity of the plasma lyso-Gb3 pool may reach a maximum at an early stage of renal dysfunction.
RESUMO
Cellulose beads emerge as carriers for poorly water-soluble drugs due to their eco-friendly raw materials and favorable porous structure. However, drug dissolution may be limited by their poor swelling ability and the presence of closed pores caused by shrinkage of the pristine cellulose beads. In this study, novel cellulose beads that can swell in acidic environment were prepared by introducing ethylenediamine (EDA) on dialdehyde cellulose (DAC), thereby addressing the shrinkage and closed pore problem of cellulose beads. The effect of the ratio of EDA on the swelling behavior and amine content of beads was studied. Three model drugs with different physicochemical properties were selected to study the physical state of loaded drugs and their release behavior. According to the results of XRPD and DSC, indomethacin and itraconazole loaded in the beads were amorphous at a drug loading of 20%, but fenofibrate was partially crystalline. Both bead size and the ratio of amine groups influenced the release behavior of the model drugs. The in vitro dissolution results showed that the cationic beads greatly improved the solubility and dissolution rate of the drug compared with the crystalline drug. Beads with a small size and high ratio of EDA tend to achieve a better drug dissolution rate and cumulative release percentage. Physical stability studies of the itraconazole-loaded beads were also implemented under four different temperature/humidity conditions for up to two months. The results showed that crystallization only appeared after two months of storage at 40°/75% RH, and the drug maintained a non-crystalline state in the other three storage conditions (0 °C/0 %RH, 0 °C/32 %RH, 25 °C/32 %RH). In conclusion, the novel pH-responsive cationic cellulose beads show great potential as a carrier for improving the rate and extent of dissolution of poorly soluble drugs and maintaining supersaturation.
RESUMO
One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in â¼ 25 % of genes for BPA, â¼ 22 % for BPF and â¼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.
RESUMO
The emerging disciplines of lipidomics and metabolomics show great potential for the discovery of diagnostic biomarkers, but appropriate pre-analytical sample-handling procedures are critical because several analytes are prone to ex vivo distortions during sample collection. To test how the intermediate storage temperature and storage period of plasma samples from K3EDTA whole-blood collection tubes affect analyte concentrations, we assessed samples from non-fasting healthy volunteers (n = 9) for a broad spectrum of metabolites, including lipids and lipid mediators, using a well-established LC-MS-based platform. We used a fold change-based approach as a relative measure of analyte stability to evaluate 489 analytes, employing a combination of targeted LC-MS/MS and LC-HRMS screening. The concentrations of many analytes were found to be reliable, often justifying less strict sample handling; however, certain analytes were unstable, supporting the need for meticulous processing. We make four data-driven recommendations for sample-handling protocols with varying degrees of stringency, based on the maximum number of analytes and the feasibility of routine clinical implementation. These protocols also enable the simple evaluation of biomarker candidates based on their analyte-specific vulnerability to ex vivo distortions. In summary, pre-analytical sample handling has a major effect on the suitability of certain metabolites as biomarkers, including several lipids and lipid mediators. Our sample-handling recommendations will increase the reliability and quality of samples when such metabolites are necessary for routine clinical diagnosis.
RESUMO
Cyclodepsipeptides of the enniation-, PF1022-, and verticilide-family represent a diverse class of highly interesting natural products with respect to their manifold biological activities. However, until now no stepwise solid-phase synthesis has been accomplished due to the difficult combination of N-methyl amino acids and hydroxycarboxylic acids. We report here the first stepwise solid-phase synthesis of the anthelmintic cyclooctadepsipeptide PF1022A based on an Fmoc/THP-ether protecting group strategy on Wang-resin. The standard conditions of our synthesis allow an unproblematic adaption to an automated peptide synthesizer.