Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de estudo
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 16(1): 488, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899097

RESUMO

BACKGROUND: Melastoma malabathricum L. (family Melastomaceae) has been traditionally used as remedies against various ailments including those related to pain. The methanol extract of M. malabathricum leaves has been proven to show antinociceptive activity. Thus, the present study aimed to determine the most effective fraction among the petroleum ether- (PEMM), ethyl acetate- (EAMM) and aqueous- (AQMM) fractions obtained through successive fractionation of crude, dried methanol extract of M. malabathricum (MEMM) and to elucidate the possible mechanisms of antinociception involved. METHODS: The effectiveness of fractions (100, 250 and 500 mg/kg; orally) were determine using the acetic acid-induced abdominal constriction test and the most effective extract was further subjected to the hot plate- or formalin-induced paw licking-test to establish its antinociceptive profile. Further elucidation of the role of opioid and vanilloid receptors, glutamatergic system, and nitric oxide/cyclic guanosine phosphate (NO/cGMP) pathway was also performed using the appropriate nociceptive models while the phytoconstituents analyses were performed using the phytochemical screening test and, HPLC-ESI and GCMS analyses. RESULTS: PEMM, EAMM and AQMM significantly (p < 0.05) attenuated acetic acid-induced nociception with the recorded EC50 of 119.5, 125.9 and 352.6 mg/kg. Based on the EC50 value, PEMM was further studied and also exerted significant (p < 0.05) antinociception against the hot plate- and formalin-induced paw licking-test. With regards to the mechanisms of antinociception,: i) PEMM significantly (p < 0.05) attenuated the nociceptive action in capsaicin- and glutamate-induced paw licking test.; ii) naloxone (5 mg/kg), a non-selective opioid antagonist, failed to significantly (p < 0.05) inhibit PEMM's antinociception iii) L-arginine (a nitric oxide precursor), but not NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase), methylene blue (MB; an inhibitor of cGMP), or their respective combination, significantly (p < 0.05) reversed the antinociception of PEMM. Phytochemical analyses revealed the presence of several antinociceptive-bearing bioactive compounds, such as triterpenes and volatile compounds like oleoamide and palmitic acid. The presence of low flavonoids, such as gallocatechin and epigallocatechin, saponins and tannins in PEMM might synergistically contribute to enhance the major compounds antinociceptive effect. CONCLUSION: PEMM exerted a non-opioid-mediated antinociceptive activity at the central and peripheral levels via the inhibition of vanilloid receptors and glutamatergic system, and the activation of NO-mediated/cGMP-independent pathway. Triterpenes, as well as volatile oleoamide and palmitic acid, might be responsible for the observed antinociceptive activity of PEMM.


Assuntos
Analgésicos/isolamento & purificação , Melastomataceae/química , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Alcanos , Analgésicos/farmacologia , Analgésicos/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Melastomataceae/toxicidade , Metanol , Camundongos , Camundongos Endogâmicos ICR , Dor/etiologia , Compostos Fitoquímicos , Extratos Vegetais/toxicidade , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Solventes , Canais de Cátion TRPV/antagonistas & inibidores
2.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059475

RESUMO

Dicranopteris linearis leaf has been reported to exert antinociceptive activity. The present study elucidates the possible mechanisms of antinociception modulated by the methanol extract of D. linearis leaves (MEDL) using various mouse models. The extract (25, 150, and 300 mg/kg) was administered orally to mice for 30 min priot to subjection to the acetic acid-induced writhing-, hot plate- or formalin-test to establish the antinociceptive profile of MEDL. The most effective dose was then used in the elucidation of possible mechanisms of action stage. The extract was also subjected to the phytochemical analyses. The results confirmed that MEDL exerted significant (p < 0.05) antinociceptive activity in those pain models as well as the capsaicin-, glutamate-, bradykinin- and phorbol 12-myristate 13-acetate (PMA)-induced paw licking model. Pretreatment with naloxone (a non-selective opioid antagonist) significantly (p < 0.05) reversed MEDL effect on thermal nociception. Only l-arginine (a nitric oxide (NO) donor) but not N(ω)-nitro-l-arginine methyl ester (l-NAME; a NO inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a specific soluble guanylyl cyclase inhibitor) significantly (p < 0.05) modified MEDL effect on the writhing test. Several polyphenolics and volatile antinociceptive compounds were detected in MEDL. In conclusion, MEDL exerted the opioid/NO-mediated antinociceptive activity, thus, justify D. linearis as a potential source for new analgesic agents development.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos/farmacologia , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Traqueófitas/química , Ácido Acético , Administração Oral , Animais , Arginina/química , Avaliação Pré-Clínica de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Hipnóticos e Sedativos/farmacologia , Masculino , Metanol , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Relaxantes Musculares Centrais/farmacologia , Fitoterapia , Acetato de Tetradecanoilforbol
3.
Phytomedicine ; 47: 58-68, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30166109

RESUMO

BACKGROUND: Passiflora cincinnata Mast. is described as a native species from the Caatinga biome, and used by traditional medicine for several pharmacological purposes, such as inflammatory disorders. However, studies that prove its biological activities are scarce. HYPOTHESIS/PURPOSE: This paper aims to evaluate the antinociceptive and anti-inflammatory activities of the aerial parts of Passiflora cincinnata (Pc-EtOH) in mice. METHODS: The chemical composition of Pc-EtOH was assessed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD). The antinociceptive profile of the extract (given orally: 100, 200 and 400 mg/kg) was established using the in vivo chemical models (acetic acid-induced abdominal constriction and formalin-induced paw licking test) and thermal (hot plate test) of nociception. The role of opioid, potassium channels, TRPV-1, muscarinic, serotoninergic (5-HT3) receptors and the participation of the nitric oxide pathway also was determined. The rota-rod test was used to verify the possible interference of the extract treatment in motor performance. Paw edema induced by carrageenan or histamine, and leukocyte migration, determination of total protein and nitric oxide to the peritoneal cavity were used for anti-inflammatory profile. RESULTS: The presence of flavonoids in the extract was confirmed using HPLC-DAD. At all doses tested the Pc-EtOH significantly reduced the number of writhing and decreased the paw licking time in both phases of the formalin test (p < 0.05). In the hot plate test, the extract increased the reaction time, reducing painful behavior. The antinociceptive mechanism probably involves central and peripheral pathways, involving the pathway of opioid and muscarinic receptors with influence of potassium channels and the nitric oxide pathway. However, the motor coordination test indicated that in the time of 120 min the extract decreases the stay time of the animal in the rota-rod. Pc-EtOH inhibited significantly (p < 0.05) the increase of the edema volume after administration of carrageenan and histamine. In the peritonitis test, acute pre-treatment with Pc-EtOH inhibited leukocyte migration, with a reduction in the number of neutrophils and concentration of total proteins and nitric oxide. CONCLUSION: The present study suggests that Pc-EtOH possesses peripheral and central antinociceptive action, and showed potential in inhibition of release of mediators of the inflammatory process.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Passiflora/química , Extratos Vegetais/farmacologia , Animais , Carragenina/efeitos adversos , Edema/tratamento farmacológico , Etanol/efeitos adversos , Flavonoides/uso terapêutico , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Medição da Dor , Componentes Aéreos da Planta/química
4.
Rev. bras. farmacogn ; 26(4): 408-419, July-Aug. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-792704

RESUMO

ABSTRACT Muntingia calabura L., Muntingiaceae, is a medicinal plant for various pain-related diseases. The aims of the present study were to determine the antinociceptive profile and to elucidate the possible mechanisms of antinociception of petroleum ether partition obtained from crude methanol extract of M. calabura leaves using various animal models. The antinociceptive profile of petroleum ether fraction (given oral; 100, 250 and 500 mg/kg) was established using the in vivo chemicals (acetic acid-induced abdominal constriction and formalin-induced paw licking test) and thermal (hot plate test) models of nociception. The role of glutamate, TRPV1 receptor, bradykinin, protein kinase C, potassium channels, and various opioid and non-opioid receptors in modulating the partition's antinociceptive activity was also determined. The results obtained demonstrated that petroleum ether partition exerted significant (p < 0.05) antinociception in all the chemicals-, thermal-, capsaicin-, glutamate-, bradykinin, and phorbol 12-myristate 13-acetate (PMA)-induced nociception models. The antinociceptive activity was reversed following pretreatment with opioid antagonists (i.e. naloxone, β-funaltrexamine, naltrindole and nor-binaltorphimine), and the non-opioid receptor antagonists (i.e. pindolol (a β-adrenoceptor), haloperidol (a non-selective dopaminergic), atropine (a non-selective cholinergic receptor), caffeine (a non-selective adenosinergic receptor), and yohimbine (an α2-noradrenergic)). In addition, pretreatment with L-arginine (a nitric oxide (NO) donor), NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS)), methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP) pathway), or their combination failed to inhibit petroleum ether partition's antinociception. In conclusion, petroleum ether partition exerts antinociceptive activity at the peripheral and central levels via the modulation of, partly, the opioid (i.e. µ, κ and δ) and several non-opioids (i.e. β-adrenergic, dopaminergic, cholinergic, adenosinergic, and α2-noradrenergic) receptors, glutamatergic, TRPV1 receptors, PKC and K+ channels systems, but not L-arg/NO/cGMP pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA