Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39069826

RESUMO

Tranexamic acid (TXA) is widely used among young women because of its ability to whiten skin and treat menorrhagia. Nevertheless, its potential effects on oocyte maturation and quality have not yet been clearly clarified. Melatonin (MT) is an endogenous hormone released by the pineal gland and believed to protect cells from oxidative stress injury. In the present study, we used in vitro maturation model to investigate the toxicity of TXA and the protective role of MT in mouse oocyte. Compared with the control group, TXA-exposed group had significantly lower nuclear maturation (57.72% vs. 94.08%, P < 0.001) and early embryo cleavage rates (38.18% vs. 87.66%, P < 0.001). Further study showed that spindle organization (52.56% vs. 18.77%, P < 0.01) and chromosome alignment (33.23% vs. 16.66%, P < 0.01) were also disrupted after TXA treatment. Mechanistically, we have demonstrated that TXA induced early apoptosis of oocytes (P < 0.001) by raising the level of ROS (P < 0.001), which was consistent with an increase in mitochondrial damage (P < 0.01). Fortunately, all these effects except the spindle defect were successfully rescued by an appropriate level of MT. Collectively, our findings indicate that MT could partially reverse TXA-induced oocyte quality deterioration in mouse by effectively improving mitochondrial function and reducing oxidative stress-mediated apoptosis.

2.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35237831

RESUMO

Mammalian oocytes are arrested at meiotic prophase I. The dual-specificity phosphatase CDC25B is essential for cyclin-dependent kinase 1 (CDK1) activation that drives resumption of meiosis. CDC25B reverses the inhibitory effect of the protein kinases WEE1 and MYT1 on CDK1 activation. Cdc25b-/- female mice are infertile because oocytes cannot activate CDK1. To identify a role for CDC25B following resumption of meiosis, we restored CDK1 activation in Cdc25b-/- oocytes by inhibiting WEE1 and MYT1, or expressing EGFP-CDC25A or constitutively active EGFP-CDK1 from microinjected complementary RNAs. Forced CDK1 activation in Cdc25b-/- oocytes allowed resumption of meiosis, but oocytes mostly arrested at metaphase I (MI) with intact spindles. Similarly, approximately a third of Cdc25b+/- oocytes with a reduced amount of CDC25B arrested in MI. MI-arrested Cdc25b-/- oocytes also displayed a transient decrease in CDK1 activity similar to Cdc25b+/+ oocytes during the MI-MII transition, whereas Cdc25b+/- oocytes exhibited only a partial anaphase-promoting complex/cyclosome activation and anaphase I entry. Thus, CDC25B is necessary for the resumption of meiosis and the MI-MII transition.


Assuntos
Meiose , Oócitos , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Feminino , Mamíferos , Metáfase , Camundongos , Oócitos/metabolismo , Fosfatases cdc25
3.
Toxicol Appl Pharmacol ; 476: 116671, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633598

RESUMO

Impaired fertility is the major side effect of chemotherapy for female cancer patients, accumulated evidence indicates this is associated with damage on oocyte quality, but the underlying mechanisms remain unclear. Previously we reported that doxorubicin (DXR) exposure, one of the most widely used chemotherapy drugs, disrupted mouse oocyte meiotic maturation in vitro. In the current study, we identified that SIRT1 expression was remarkably reduced in DXR exposure oocytes. Next, we found that increasing SIRT1 expression by resveratrol partially alleviated the effects of DXR exposure on oocyte maturation, which was counteracted by SIRT1 inhibition. Furthermore, we revealed that increasing SIRT1 expression mitigated DXR induced oocyte damage through reducing ROS levels, increasing antioxidant enzyme MnSOD expression, and preventing spindle and chromosome disorganization, lowering the incidence of aneuploidy. Importantly, by performing in vitro fertilization and embryo transfer assays, we demonstrated that increasing SIRT1 expression significantly improved the fertilization ability, developmental competence of oocytes and early embryos. In summary, our data uncover that SIRT1 reduction represents one mechanism that mediates the effects of DXR exposure on oocyte quality.


Assuntos
Oócitos , Sirtuína 1 , Feminino , Animais , Camundongos , Sirtuína 1/genética , Estresse Oxidativo , Antioxidantes , Doxorrubicina/toxicidade
4.
Anim Biotechnol ; 34(2): 413-423, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34154517

RESUMO

Early embryo development is driven first by the maternal RNAs and proteins accumulated during the oocyte's cytoplasmic maturation and then after the embryo genome activation. In mammalian cells, ATP generation occurs via oxidative pathways or by glycolysis, whereas in embryonic stem cells, the consumption of glucose, pyruvate, lipids, and amino acids results in ATP synthesis. Although the bovine embryo has energy reserves in glycogen and lipids, the glycogen concentration is deficient. Conversely, lipids represent the most abundant energy reservoir of bovine embryos, where lipid droplets-containing triacylglycerols are the main fatty acid stores. Oocytes of many mammalian species contain comparatively high amounts of lipids stored as droplets in the ooplasm. L-carnitine has been described as a cofactor that facilitates the mobilization of fatty acids present in the oocyte's cytoplasm into the mitochondria to facilitate ß-oxidation processes. However, the L-carnitine effects by addition to media in the in vitro produced embryos on the quality are highly disputed and contradictory by different researchers. This review's objective was to explore the effect that the addition of L-carnitine on culture media could have on the overall bovine embryo production in vitro, from the oocyte metabolism to the modulation of gene expression in the developing embryos.


Assuntos
Carnitina , Células-Tronco Embrionárias , Animais , Bovinos , Carnitina/farmacologia , Suplementos Nutricionais , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo
5.
Environ Toxicol ; 38(8): 1800-1810, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37052413

RESUMO

Propyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG-treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG-induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.


Assuntos
Antioxidantes , Galato de Propila , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galato de Propila/metabolismo , Galato de Propila/farmacologia , Histonas , Oócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Meiose , Dano ao DNA , Apoptose
6.
EMBO J ; 37(24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30478191

RESUMO

Meiotic resumption-coupled degradation of maternal transcripts occurs during oocyte maturation in the absence of mRNA transcription. The CCR4-NOT complex has been identified as the main eukaryotic mRNA deadenylase. In vivo functional and mechanistic information regarding its multiple subunits remains insufficient. Cnot6l, one of four genes encoding CCR4-NOT catalytic subunits, is preferentially expressed in mouse oocytes. Genetic deletion of Cnot6l impaired deadenylation and degradation of a subset of maternal mRNAs during oocyte maturation. Overtranslation of these undegraded mRNAs caused microtubule-chromosome organization defects, which led to activation of spindle assembly checkpoint and meiotic cell cycle arrest at prometaphase. Consequently, Cnot6l-/- female mice were severely subfertile. The function of CNOT6L in maturing oocytes is mediated by RNA-binding protein ZFP36L2, not maternal-to-zygotic transition licensing factor BTG4, which interacts with catalytic subunits CNOT7 and CNOT8 of CCR4-NOT Thus, recruitment of different adaptors by different catalytic subunits ensures stage-specific degradation of maternal mRNAs by CCR4-NOT This study provides the first direct genetic evidence that CCR4-NOT-dependent and particularly CNOT6L-dependent decay of selective maternal mRNAs is a prerequisite for meiotic maturation of oocytes.


Assuntos
Meiose , Oócitos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Animais , Exorribonucleases , Feminino , Deleção de Genes , Camundongos , Camundongos Knockout , Oócitos/citologia , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Proteínas Repressoras , Ribonucleases/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo
7.
Zygote ; 30(5): 674-688, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35652653

RESUMO

The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) links the folate cycle that produces one-carbon units with the methionine cycle that converts these into S-adenosylmethionine (SAM), the universal methyl donor for almost all methyltransferases. Previously, MTHFR has been shown to be regulated by phosphorylation, which suppresses its activity. SAM levels have been shown to increase substantially soon after initiation of meiotic maturation of the mouse germinal vesicle (GV) stage oocyte and then decrease back to their original low level in mature second meiotic metaphase (MII) eggs. As MTHFR controls the entry of one-carbon units into the methionine cycle, it is a candidate regulator of the SAM levels in oocytes and eggs. Mthfr transcripts are expressed in mouse oocytes and preimplantation embryos and MTHFR protein is present at each stage. In mature MII eggs, the apparent molecular weight of MTHFR was increased compared with GV oocytes, which we hypothesized was due to increased phosphorylation. The increase in apparent molecular weight was reversed by treatment with lambda protein phosphatase (LPP), indicating that MTHFR is phosphorylated in MII eggs. In contrast, LPP had no effect on MTHFR from GV oocytes, 2-cell embryos, or blastocysts. MTHFR was progressively phosphorylated after initiation of meiotic maturation, reaching maximal levels in MII eggs before decreasing again after egg activation. As phosphorylation suppresses MTHFR activity, it is predicted that MTHFR becomes inactive during meiotic maturation and is minimally active in MII eggs, which is consistent with the reported changes in SAM levels during mouse oocyte maturation.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , S-Adenosilmetionina , Animais , Carbono/metabolismo , Ácido Fólico/metabolismo , Meiose , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Metiltransferases/metabolismo , Camundongos , Oócitos/fisiologia , S-Adenosilmetionina/metabolismo
8.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430853

RESUMO

Transcription factor AP-2-alpha (Tfap2a) is an important sequence-specific DNA-binding protein that can regulate the transcription of multiple genes by collaborating with inducible viral and cellular enhancer elements. In this experiment, the expression, localization, and functions of Tfap2a were investigated in mouse oocytes during maturation. Overexpression via microinjection of Myc-Tfap2a mRNA into the ooplasm, immunofluorescence, and immunoblotting were used to study the role of Tfap2a in mouse oocyte meiosis. According to our results, Tfap2a plays a vital role in mouse oocyte maturation. Levels of Tfap2a in GV oocytes of mice suffering from type 2 diabetes increased considerably. Tfap2a was distributed in both the ooplasm and nucleoplasm, and its level gradually increased as meiosis resumption progressed. The overexpression of Tfap2a loosened the chromatin, accelerated germinal vesicle breakdown (GVBD), and blocked the first polar body extrusion 14 h after maturation in vitro. The width of the metaphase plate at metaphase I stage increased, and the spindle and chromosome organization at metaphase II stage were disrupted in the oocytes by overexpressed Tfap2a. Furthermore, Tfap2a overexpression dramatically boosted the expression of p300 in mouse GV oocytes. Additionally, the levels of pan histone lysine acetylation (Pan Kac), histone H4 lysine 12 acetylation (H4K12ac), and H4 lysine 16 acetylation (H4K16ac), as well as pan histone lysine lactylation (Pan Kla), histone H3 lysine18 lactylation (H3K18la), and H4 lysine12 lactylation (H4K12la), were all increased in GV oocytes after Tfap2a overexpression. Collectively, Tfap2a overexpression upregulated p300, increased the levels of histone acetylation and lactylation, impeded spindle assembly and chromosome alignment, and ultimately hindered mouse oocyte meiosis.


Assuntos
Diabetes Mellitus Tipo 2 , Histonas , Camundongos , Animais , Histonas/metabolismo , Lisina/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Oócitos/metabolismo , Cromossomos/genética , Cromossomos/metabolismo
9.
Mol Hum Reprod ; 27(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411256

RESUMO

In vitro follicle development from cryopreserved ovarian tissue could become an invaluable assisted reproduction technology for women with early ovarian failure. The challenge lies in producing, from small follicles present in the ovarian cortex, high-quality mature oocytes able to sustain embryo development. In vivo, an optimal combination of hormones and other factors coordinates the development of follicles and their enclosed oocyte. We have investigated the effect of the leukaemia inhibitory factor (LIF) cytokine, alone or in combination with FSH, on sheep in vitro follicle development from the preantral stage onwards. LIF did not alter follicle growth or antrum formation, but it modulated the differentiation of granulosa cells, as revealed by decreased production of anti-Müllerian hormone and abolished FSH-induced stimulation of oestradiol secretion. This modulatory role was also reflected in the abundance of mRNA from 35 genes, analysed by reverse-transcription coupled to microfluidic quantitative PCR. LIF stimulated or at least maintained the expression of genes involved in the dialogue between the oocyte and granulosa cells, through gap junctions (GJA4 encoding connexin 37) or paracrine signalling (Bone morphogenetic protein 15, KIT ligand and their receptors). Finally, the presence of both LIF and FSH during follicle growth strongly improved oocyte meiotic competence: most oocytes (56%) underwent subsequent nuclear maturation, a significant increase compared with their counterparts from follicles of similar size (550-900 µm) cultured with FSH only (28%) or developed in vivo (9%). Their ability to sustain embryo development remains to be evaluated. Combined supplementation with FSH and LIF certainly merits investigation with human follicles.


Assuntos
Células da Granulosa/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Oogênese/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/fisiologia , Meiose/efeitos dos fármacos , Meiose/genética , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Oogênese/genética , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/fisiologia , Ovinos
10.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063622

RESUMO

Ribonucleic acid export 1 (Rae1) is an important nucleoporin that participates in mRNA export during the interphase of higher eukaryotes and regulates the mitotic cell cycle. In this study, small RNA interference technology was used to knockdown Rae1, and immunofluorescence, immunoblotting, and chromosome spreading were used to study the role of Rae1 in mouse oocyte meiotic maturation. We found that Rae1 is a crucial regulator of meiotic maturation of mouse oocytes. After the resumption of meiosis (GVBD), Rae1 was concentrated on the kinetochore structure. The knockdown of Rae1 by a specific siRNA inhibited GVBD progression at 2 h, finally leading to a decreased 14 h polar body extrusion (PBE) rate. However, a comparable 14 h PBE rate was found in the control, and the Rae1 knockdown groups that had already undergone GVBD. Furthermore, we found elevated PBE after 9.5 h in the Rae1 knockdown oocytes. Further analysis revealed that Rae1 depletion significantly decreased the protein level of securin. In addition, we detected weakened kinetochore-microtubule (K-MT) attachments, misaligned chromosomes, and an increased incidence of aneuploidy in the Rae1 knockdown oocytes. Collectively, we propose that Rae1 modulates securin protein levels, which contribute to chromosome alignment, K-MT attachments, and aneuploidy in meiosis.


Assuntos
Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Oócitos/metabolismo , Animais , Técnicas de Silenciamento de Genes , Técnicas de Maturação in Vitro de Oócitos , Cinetocoros/metabolismo , Camundongos , Oócitos/crescimento & desenvolvimento , Corpos Polares/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
11.
Semin Cell Dev Biol ; 84: 90-99, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29242146

RESUMO

In virtually all sexually reproducing animals, oocytes arrest in meiotic prophase and resume meiosis in a conserved biological process called meiotic maturation. Meiotic arrest enables oocytes, which are amongst the largest cells in an organism, to grow and accumulate the necessary cellular constituents required to support embryonic development. Oocyte arrest can be maintained for a prolonged period, up to 50 years in humans, and defects in the meiotic maturation process interfere with the faithful segregation of meiotic chromosomes, representing the leading cause of human birth defects and female infertility. Hormonal signaling and interactions with somatic cells of the gonad control the timing of oocyte meiotic maturation. Signaling activates the CDK1/cyclin B kinase, which plays a central role in regulating the nuclear and cytoplasmic events of meiotic maturation. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation whereas cytoplasmic maturation involves major changes in oocyte protein translation and cytoplasmic organelles and is less well understood. Classically, meiotic maturation has been studied in organisms with large oocytes to facilitate biochemical analysis. Recently, the nematode Caenorhabditis elegans is emerging as a genetic paradigm for studying the regulation of oocyte meiotic maturation. Studies in this system have revealed conceptual, anatomical, and molecular links to oocytes in all animals including humans. This review focuses on the signaling mechanisms required to control oocyte growth and meiotic maturation in C. elegans and discusses how the downstream regulation of protein translation coordinates the completion of meiosis and the oocyte-to-embryo transition.


Assuntos
Desenvolvimento Embrionário/fisiologia , Meiose/fisiologia , Oócitos/citologia , Oogênese/fisiologia , Animais , Caenorhabditis elegans , Humanos , Transdução de Sinais/fisiologia
12.
Bull Exp Biol Med ; 168(3): 385-389, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31938908

RESUMO

We studied the influence of the estrous cycle on the morphology of preovulatory (germinal vesicle, GV) oocytes in mice and their capacity to meiotic maturation in vitro. After standard injections of eCG gonadotropin (PMSG, Follimag) to females at different stages of the estrous cycle, the maximum levels of GV oocytes (26±1/mouse) were isolated from the ovaries of animals injected with the hormone during estrus. The capacity of isolated GV oocytes to meiotic maturation in vitro decreased in the following order: estrus (75.5±2.3%), metestrus (67.9±3.4%), proestrus (57.8±4.4%), and diestrus (50.6±5.6%); the differences between estrus and diestrus/proestrus were significant (p<0.05). After eCG injections during estrus, GV oocytes differed from other oocytes by lesser total diameter, lesser diameter of cytoplasm, lesser thickness of zona pellucida, and moderately dilated perivitelline space. These signs reflected higher competence of the "estrous" GV oocytes for meiotic maturation in vitro. Hormone stimulation of females with eCG, with consideration for the stage of the estrous cycle, seems to be an effective method for improving the quality of GV oocytes isolated from mouse ovaries.


Assuntos
Ciclo Estral/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Diestro/efeitos dos fármacos , Estro/efeitos dos fármacos , Feminino , Gonadotropinas/farmacologia , Metestro/efeitos dos fármacos , Camundongos , Ovário/citologia , Ovário/efeitos dos fármacos
13.
J Cell Physiol ; 234(10): 17767-17774, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30805939

RESUMO

NESFATIN-1 acts as a neuroendocrine hormone to suppress gonadotropin secretion in the female goldfish and to prevent germinal vesicle breakdown of oocytes in the zebrafish. However, the expression and function of NESFATIN-1 in meiotic maturation and development of porcine oocytes remains elusive. Genomic structure of porcine NESFATIN-1 precursor nucleobindin 2 (NUCB2) is first characterized in detail and an evolutionally closer relationship of NESFATIN-1 between pig and rat is shown by phylogenetic analysis of multiple species. Additionally, immunofluorescence analysis revealed that NESFATIN-1 is predominantly expressed and localizes on the membrane of both theca cells and granulosa cells, but not expressed in oocytes. Real-time quantitative polymerase chain reaction showed that the abundance of NESFATIN-1 transcripts in granulosa cells progressively decreases during the developmental transition from small follicles to large follicles. Correspondingly, NESFATIN-1 could significantly enhance both the cleavage and blastocyst rate of parthenogenetically activated oocytes from small follicles (p < 0.05), whereas it did not affect meiotic maturation and development of oocytes from large follicles. Interestingly, we found that NESFATIN-1 significantly improves meiotic maturation of oocytes cultured in chemically defined medium in the absence of pyruvate compared with the control group (p < 0.05), suggesting that the NESFATIN-1 as a substitute for pyruvate exerts beneficial effects on porcine oocyte maturation. In conclusion, these results demonstrate that NESFATIN-1 facilitates both meiotic maturation and development of porcine oocytes.


Assuntos
Meiose/fisiologia , Nucleobindinas/metabolismo , Oócitos/metabolismo , Oócitos/fisiologia , Animais , Blastocisto/metabolismo , Blastocisto/fisiologia , Células Cultivadas , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Oogênese/fisiologia , Filogenia , Suínos
14.
Biol Reprod ; 100(6): 1473-1481, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939202

RESUMO

Plasminogen activator, tissue type (PLAT) and its inhibitor serpin family E member 1 (SERPINE1) cooperatively regulate PLAT activity in various reproductive processes. However, it is unknown whether this includes bovine oocyte maturation. We addressed this question in the present study by evaluating PLAT and SERPINE1 protein localization in immature cumulus-oocyte complexes (COCs), as well as PLAT mRNA and protein expression in cultured COCs after 0, 8, 16, and 24 h of in vitro maturation (IVM). We also examined the effects of PLAT and SERPINE1 on germinal vesicle breakdown (GVBD) and oocyte cyclic 3' 5' adenosine monophosphate (cAMP) levels, cumulus expansion index, and expansion-related gene expression in oocytes derived from bovine COCs cultured for 4, 8, and 12 h and in COCs cultured for 16 h. Both PLAT and SERPINE1 localized in cumulus cells but only the latter was detected in oocytes. PLAT and SERPINE1 transcript levels increased during IVM; however, from 8 to 16 h, the levels of PLAT remained stable whereas those of SERPINE1 increased, resulting in a decline in PLAT concentration. Additionally, PLAT delayed GVBD, increased oocyte cAMP levels, and blocked cumulus expansion and associated gene expression, which was reversed by SERPINE1 supplemented. Thus, PLAT delays bovine oocyte GVBD by enhancing oocyte cAMP levels during the first 8 h of IVM; suppression of PLAT activity via accumulation of SERPINE1 in COCs results in cumulus expansion from 8 to 16 h of IVM. These findings provide novel insights into the molecular mechanisms underlying in vitro bovine oocyte maturation.


Assuntos
Proliferação de Células , Células do Cúmulo/fisiologia , Oócitos/fisiologia , Oogênese/fisiologia , Ativador de Plasminogênio Tecidual/fisiologia , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Células do Cúmulo/citologia , Feminino , Técnicas de Maturação in Vitro de Oócitos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oogênese/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/farmacologia , Transcriptoma
15.
Mol Reprod Dev ; 86(5): 543-557, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30793403

RESUMO

Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O-GlcNAcylation-the addition of a single sugar residue (O-linked ß-N-acetylglucosamine) on proteins-is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O-GlcNAcylation is mediated by O-GlcNAc transferase (OGT), which adds O-GlcNAc onto proteins, and O-GlcNAcase (OGA), which removes it. Here we investigated O-GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O-GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O-GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O-GlcNAc function, we disrupted O-GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet-G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O-GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O-GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.


Assuntos
Acetilglucosamina/metabolismo , Fertilização/fisiologia , Homeostase/fisiologia , Meiose/fisiologia , Oócitos/metabolismo , Animais , Bovinos , Feminino , Humanos , Oócitos/fisiologia
16.
Exp Cell Res ; 371(2): 435-443, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195030

RESUMO

Nucleoporins (Nups) are a large and diverse family of proteins that mediate nucleocytoplasmic transport at interphase of vertebrate cells. Nups also function in mitosis progression. However, whether Nups are involved in oocyte meiosis progression is still rarely known. In this study, we delineated the roles and regulatory mechanisms of Nucleoporin35 (Nup35) during oocyte meiotic maturation. The immunofluorescent signal of Nup35 was localized in the nuclear membrane at germinal vesicle (GV) stage, the microtubules and spindle at pro-metaphase I (pro-MI), metaphase I (MI), and metaphase II (MII), but to the spindle poles at anaphase I (AI) and telophase I (TI). The dynamic localization pattern of Nup35 during oocyte meiotic maturation implied its specific roles. We also found that Nup35 existed as a putatively phosphorylated form after resumption of meiosis (GVBD), but not at GV stage, implying its functional switch from nuclear membrane to meiotic progression. Further study uncovered that knockdown of Nup35 by specific siRNA significantly compromised the extrusion of first polar body (PBE), but not GVBD, with defects of spindle assembly and chromosome alignment and dissociated some localization signal of p-ERK1/2 from spindle poles to cytoplasm. A defective kinetochore - microtubule attachment (K-MT) was also identified in oocytes after knockdown of Nup35, which activates spindle assembly checkpoint. In conclusion, our results suggest that Nup35 is putatively phosphorylated and released to the cytoplasm after resumption of meiosis, and regulates spindle assembly and chromosome alignment.


Assuntos
Cinetocoros/metabolismo , Meiose , Microtúbulos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Oócitos/metabolismo , Fuso Acromático/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cinetocoros/ultraestrutura , Camundongos , Microtúbulos/ultraestrutura , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Oócitos/ultraestrutura , Fosforilação , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/ultraestrutura
17.
Gen Comp Endocrinol ; 279: 35-44, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244056

RESUMO

Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.


Assuntos
Óxido Nítrico/metabolismo , Ovário/fisiologia , Animais , Feminino , Humanos , Modelos Biológicos , Óxido Nítrico Sintase/metabolismo , Reprodução
18.
Development ; 142(15): 2633-40, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26160904

RESUMO

During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Óvulo/fisiologia , Proteínas RGS/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Animais , Feminino , Imunofluorescência , Immunoblotting , Camundongos , Óvulo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
19.
J Reprod Dev ; 64(5): 385-392, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29937465

RESUMO

The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or 42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5' adenosine monophosphate activated kinase (P = 0.03). Heat stress exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.


Assuntos
Células do Cúmulo/metabolismo , Junções Comunicantes/metabolismo , Resposta ao Choque Térmico , Temperatura Alta , Oócitos/citologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Bovinos , Cromatina/metabolismo , Células do Cúmulo/citologia , GMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Meiose , Progesterona/química
20.
Reprod Domest Anim ; 53(3): 636-643, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29430805

RESUMO

P38α mitogen-activated protein kinase (MAPK), which is a member of the canonical MAPK family, is activated in response to various extracellular stresses and plays a role in multiple cellular processes. In this study, we investigated the expression, subcellular localization and functional roles of p38α MAPK during the meiotic maturation of rat oocytes. We found that p38α MAPK phosphorylation (p-p38α MAPK, indicative of p38α MAPK activation) was low at the germinal vesicle (GV) stage, increased 3 hr after germinal vesicle breakdown (GVBD) and maintained its maximum at metaphase I (MI) or metaphase II (MII). The p-p38α MAPK mainly accumulated in the GV and had no obvious expression in the nucleus. From GVBD to MII, p-p38α MAPK was distributed in the cytoplasm around either the chromosomes or the spindle. We used SB203580, an inhibitor of p38α MAPK, to investigate the possible functional role of p38α MAPK during rat oocyte meiotic maturation. Treatment of GV stage oocytes with 20 µM SB203580 blocked p-p38α MAPK activity, and the spindles appeared abnormal. Additionally, the rate of GVBD after 3 hr of culture with 20 µM SB203580 (58.8%) was significantly inhibited compared with the control (82.5%, p < .05), and the polar body extrusion rate after 12 hr of culture with SB203580 was also significantly decreased compared with the control (40.1% vs 73.3%, p < .05). Taken together, these data indicate that p38α MAPK may play a vital role in rat oocyte meiotic maturation.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Oócitos/citologia , Oócitos/enzimologia , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Imidazóis/farmacologia , Meiose/fisiologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridinas/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA