Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain Behav Immun ; 110: 80-84, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813210

RESUMO

Anorexia is a common symptom during infectious and inflammatory disease. Here we examined the role of melanocortin-4 receptors (MC4Rs) in inflammation-induced anorexia. Mice with transcriptional blockage of the MC4Rs displayed the same reduction of food intake following peripheral injection of lipopolysaccharide as wild type mice but were protected against the anorexic effect of the immune challenge in a test in which fasted animals were to use olfactory cues to find a hidden cookie. By using selective virus-mediated receptor re-expression we demonstrate that the suppression of the food-seeking behavior is subserved by MC4Rs in the brain stem parabrachial nucleus, a central hub for interoceptive information involved in the regulation of food intake. Furthermore, the selective expression of MC4R in the parabrachial nucleus also attenuated the body weight increase that characterizes MC4R KO mice. These data extend on the functions of the MC4Rs and show that MC4Rs in the parabrachial nucleus are critically involved in the anorexic response to peripheral inflammation but also contribute to body weight homeostasis during normal conditions.


Assuntos
Núcleos Parabraquiais , Camundongos , Animais , Núcleos Parabraquiais/metabolismo , Anorexia/metabolismo , Neurônios/metabolismo , Peso Corporal , Inflamação/metabolismo , Melanocortinas/metabolismo , Ingestão de Alimentos/fisiologia
2.
Proc Natl Acad Sci U S A ; 113(43): 12298-12303, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791019

RESUMO

Melanocortin-4 receptor (Mc4r)-expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology. Here, we test the hypothesis that neonatal hyperleptinemia due to maternal obesity induces persistent changes in the central melanocortin system, thereby contributing to offspring hypertension. Working on the OffOb paradigm in both sexes and using transgenic technology to restore Mc4r in the PVH of Mc4rKO (Mc4rPVH) mice, we have now shown that these mice develop higher BP than Mc4rKO or WT mice. We have also found that experimental hyperleptinemia induced in the neonatal period in Mc4rPVH and WT mice, but not in the Mc4rKO mice, leads to heightened BP and severe renal dysfunction. Thus, Mc4r in the PVH appears to be required for early-life programming of hypertension arising from either maternal obesity or neonatal hyperleptinemia. Early-life exposure of the PVH to maternal obesity through postnatal elevation of leptin may have long-term consequences for cardiovascular health.


Assuntos
Hipertensão/genética , Leptina/metabolismo , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptor Tipo 4 de Melanocortina/genética , Animais , Pressão Sanguínea/genética , Dieta/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Leptina/genética , Masculino , Relações Materno-Fetais/fisiologia , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Obesidade/complicações , Obesidade/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(10 Pt A): 2477-2485, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28499988

RESUMO

The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.


Assuntos
Melanocortinas/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Metabolismo Energético , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Mutação , Obesidade/genética , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais
4.
Addict Biol ; 20(2): 302-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24635847

RESUMO

Although the role of alpha-melanocyte stimulating hormone (α-MSH) in alcohol seeking behaviour in rats has been demonstrated, the underlying mechanisms are not understood. Herein, we test the hypothesis that α-MSH might have a permissive effect in promoting the reward action of ethanol. Rats were implanted with cannulae targeted at the posterior ventral tegmental area (pVTA), because the site is sensitive to reinforcing effects of ethanol. These rats were trained to self-administer ethanol in standard two-lever (active/inactive) operant chamber test. Each active lever press resulted in self-administration of 100 nl of ethanol (100-300 mg%) containing solution. Over a period of 7 days, ethanol significantly increased the number of lever presses, which was considered as a measure of reward. Because ethanol at 200 mg% resulted in maximum number of lever presses (∼18-20 lever presses/30-minute session), the dose was employed in further studies. While prior administration of melanocortin (MC) agonists, α-MSH or [Nle4,D-Phe7]-alpha-MSH into pVTA, resulted in an 89% increase in lever presses, the response was attenuated following pre-treatment with MC4 receptors (MC4R) antagonist, HS014. In an immunohistochemical study, the brains of rats that were trained to self-infuse ethanol showed significantly increased α-MSH immunoreactivity in the nucleus accumbens shell, bed nucleus of stria terminalis and arcuate nucleus of the hypothalamus. In the pVTA, α-MSH fibres were found to run close to the dopamine cells, labelled with tyrosine hydroxylase antibodies. We suggest that α-MSH-MC4R system in the pVTA might be a part of the neuroadaptive mechanism underlying ethanol addiction.


Assuntos
Alcoolismo/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Receptor Tipo 4 de Melanocortina/metabolismo , Reforço Psicológico , Área Tegmentar Ventral , alfa-MSH/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Neurônios Dopaminérgicos/metabolismo , Comportamento de Procura de Droga , Etanol/farmacologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Melanocortinas/agonistas , Microinjeções , Núcleo Accumbens/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Autoadministração , Núcleos Septais/metabolismo , alfa-MSH/efeitos dos fármacos
5.
Handb Clin Neurol ; 181: 301-310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238466

RESUMO

Neural circuits in the hypothalamus play a key role in the regulation of human energy homeostasis. A critical circuit involves leptin-responsive neurons in the hypothalamic arcuate nucleus (the infundibular nucleus in humans) expressing the appetite-suppressing neuropeptide proopiomelanocortin (POMC) and the appetite-stimulating Agouti-related peptide. In the fed state, the POMC-derived melanocortin peptide α-melanocyte-stimulating hormone stimulates melanocortin-4 receptors (MC4Rs) expressed on second-order neurons in the paraventricular nucleus of the hypothalamus (PVN). Agonism of MC4R leads to reduced food intake and increased energy expenditure. Disruption of this hypothalamic circuit by inherited mutations in the genes encoding leptin, the leptin receptor, POMC, and MC4R can lead to severe obesity in humans. The characterization of these and closely related genetic obesity syndromes has informed our understanding of the neural pathways by which leptin regulates energy balance, neuroendocrine function, and the autonomic nervous system. A broader understanding of these neural and molecular mechanisms has paved the way for effective mechanism-based therapies for patients whose severe obesity is driven by disruption of these pathways.


Assuntos
Obesidade , Pró-Opiomelanocortina , Metabolismo Energético/genética , Humanos , Hipotálamo/metabolismo , Leptina/genética , Leptina/metabolismo , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptores para Leptina/genética , Síndrome
6.
J Clin Res Pediatr Endocrinol ; 10(1): 68-73, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739551

RESUMO

Proopiomelanocortin (POMC) deficiency is a rare monogenic disorder with early-onset obesity. Investigation of this entity have increased our insight into the important role of the leptin-melanocortin pathway in energy balance. Here, we present a patient with POMC deficiency due to a homozygous c.206delC mutation in the POMC gene. We discuss the pathogenesis of this condition with emphasis on the crosstalk between hypothalamic and peripheral signals in the development of obesity and the POMC-melanocortin 4 receptors system as a target for therapeutic intervention.


Assuntos
Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/metabolismo , Obesidade/diagnóstico , Obesidade/metabolismo , Pró-Opiomelanocortina/deficiência , Insuficiência Adrenal/genética , Pré-Escolar , Feminino , Humanos , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
7.
Eur J Pharmacol ; 799: 58-66, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28132916

RESUMO

Melanocortin 4 (MC4) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ1/2=160min) and UTBC102 (τ1/2=7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ1/2=224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC4 receptor specific ligands and could complement each other in these studies.


Assuntos
Corantes Fluorescentes/metabolismo , Oligopeptídeos/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Desenho de Fármacos , Corantes Fluorescentes/química , Humanos , Cinética , Ligantes , Oligopeptídeos/química , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA