Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924650

RESUMO

FLAGELLIN SENSING 2 (FLS2) encodes a pattern recognition receptor that perceives bacterial flagellin. While putative FLS2 orthologs are broadly conserved in plants, their functional characterization remains limited. Here, we report the identification of orthologs in cucumber (Cucumis sativus) and melon (C. melo), named CsFLS2 and CmFLS2, respectively. Homology searching identified CsFLS2, and virus-induced gene silencing (VIGS) demonstrated that CsFLS2 is required for flg22-triggered ROS generation. Interestingly, genome re-sequencing of melon cv. Lennon and subsequent genomic PCR revealed that Lennon has two CmFLS2 haplotypes, haplotype I encoding full-length CmFLS2 and haplotype II encoding a truncated form. We show that VIGS-mediated knockdown of CmFLS2 haplotype I resulted in a significant reduction in both flg22-triggered ROS generation and immunity to a bacterial pathogen in melon cv. Lennon. Remarkably, genomic PCR of CmFLS2 revealed that 68% of tested commercial melon cultivars possess only CmFLS2 haplotype II: these cultivars thus lack functional CmFLS2. To explore evolutionary aspects of CmFLS2 haplotype II occurrence, we genotyped the CmFLS2 locus in 142 melon accessions by genomic PCR and analyzed 437 released sequences. The results suggest that CmFLS2 haplotype II is derived from C. melo subsp. melo. Furthermore, we suggest that the proportion of CmFLS2 haplotype II increased among the improved melo group compared with the primitive melo group. Collectively, these findings suggest that the deleted FLS2 locus generated in the primitive melo subspecies expanded after domestication, resulting in the spread of commercial melon cultivars defective in flagellin recognition, which is critical for bacterial immunity.

2.
Plant J ; 118(6): 2249-2268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430487

RESUMO

Melon (Cucumis melo L.), being under intensive domestication and selective breeding, displays an abundant phenotypic diversity. Wild germplasm with tolerance to stress represents an untapped genetic resource for discovery of disease-resistance genes. To comprehensively characterize resistance genes in melon, we generate a telomere-to-telomere (T2T) and gap-free genome of wild melon accession PI511890 (C. melo var. chito) with a total length of 375.0 Mb and a contig N50 of 31.24 Mb. The complete genome allows us to dissect genome architecture and identify resistance gene analogs. We construct a pan-NLRome using seven melon genomes, which include 208 variable and 18 core nucleotide-binding leucine-rich repeat receptors (NLRs). Multiple disease-related transcriptome analyses indicate that most up-regulated NLRs induced by pathogens are shell or cloud NLRs. The T2T gap-free assembly and the pan-NLRome not only serve as essential resources for genomic studies and molecular breeding of melon but also provide insights into the genome architecture and NLR diversity.


Assuntos
Cucumis melo , Resistência à Doença , Genoma de Planta , Genoma de Planta/genética , Cucumis melo/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Cucurbitaceae/genética
3.
Plant J ; 117(2): 516-540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864805

RESUMO

Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.


Assuntos
Citrullus , Comamonadaceae , Cucurbitaceae , Adaptação ao Hospedeiro , Doenças das Plantas/microbiologia , Citrullus/genética , Aminoácidos
4.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842600

RESUMO

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Assuntos
Cucumis melo , Ciclopentanos , Frutas , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Folhas de Planta , Proteínas de Plantas , Plantas Geneticamente Modificadas , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Regiões Promotoras Genéticas , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Acetatos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
5.
BMC Plant Biol ; 24(1): 696, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044142

RESUMO

BACKGROUND: Phosphorus (P) deficiency, a major nutrient stress, greatly hinders plant growth. Phosphate (Pi) uptake in plant roots relies on PHT1 family transporters. However, melon (Cucumis melo L.) lacks comprehensive identification and characterization of PHT1 genes, particularly their response patterns under diverse stresses. RESULTS: This study identified and analyzed seven putative CmPHT1 genes on chromosomes 3, 4, 5, 6, and 7 using the melon genome. Phylogenetic analysis revealed shared motifs, domain compositions, and evolutionary relationships among genes with close histories. Exon number varied from 1 to 3. Collinearity analysis suggested segmental and tandem duplications as the primary mechanisms for CmPHT1 gene family expansion. CmPHT1;4 and CmPHT1;5 emerged as a tandemly duplicated pair. Analysis of cis-elements in CmPHT1 promoters identified 14 functional categories, including putative PHR1-binding sites (P1BS) in CmPHT1;4, CmPHT1;6, and CmPHT1;7. We identified that three WRKY transcription factors regulated CmPHT1;5 expression by binding to its W-box element. Notably, CmPHT1 promoters harbored cis-elements responsive to hormones and abiotic factors. Different stresses regulated CmPHT1 expression differently, suggesting that the adjusted expression patterns might contribute to plant adaptation. CONCLUSIONS: This study unveils the characteristics, evolutionary diversity, and stress responsiveness of CmPHT1 genes in melon. These findings lay the foundation for in-depth investigations into their functional mechanisms in Cucurbitaceae crops.


Assuntos
Cucumis melo , Regulação da Expressão Gênica de Plantas , Fosfatos , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis melo/genética , Cucumis melo/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genes de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Transporte Biológico/genética
6.
BMC Plant Biol ; 24(1): 58, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245701

RESUMO

BACKGROUND: Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described. Nevertheless, the transcriptomic response that might infer the resistance to this potyvirus has not been explored. RESULTS: We have performed a comparative transcriptomic analysis using mock and WMV-inoculated plants of the susceptible cultivar "Bola de oro" (BO) and a resistant RIL (Recombinant inbred line) derived from the initial cross between "TGR-1551" and BO. In total, 616 genes were identified as differentially expressed and the weighted gene co-expression network analysis (WGCNA) detected 19 gene clusters (GCs), of which 7 were differentially expressed for the genotype x treatment interaction term. SNPs with a predicted high impact on the protein function were detected within the coding regions of most of the detected DEGs. Moreover, 3 and 16 DEGs were detected within the QTL regions previously described in chromosomes 11 and 5, respectively. In addition to these two specific genomic regions, we also observde large transcriptomic changes from genes spread across the genome in the resistant plants in response to the virus infection. This early response against WMV implied genes involved in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway or ubiquitin mediated proteolysis, in detriment to the photosynthetic and basal metabolites pathways. Moreover, the gene MELO3C021395, which coded a mediator of RNA polymerase II transcription subunit 33A (MED33A), has been proposed as the candidate gene located on chromosome 11 conferring resistance to WMV. CONCLUSIONS: The comparative transcriptomic analysis presented here showed that, even though the resistance to WMV in TGR-1551 has a recessive nature, it triggers an active defense response at a transcriptomic level, which involves broad-spectrum resistance mechanisms. Thus, this study represents a step forward on our understanding of the mechanisms underlaying WMV resistance in melon. In addition, it sheds light into a broader topic on the mechanisms of recessive resistances.


Assuntos
Cucurbitaceae , Potyvirus , Cucurbitaceae/genética , Potyvirus/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas/genética
7.
Plant Biotechnol J ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816932

RESUMO

Many biotic or abiotic factors such as CPPU (N-(2-chloro-pyridin-4-yl)-N'-phenylurea), a growth regulator of numerous crops, can induce bitterness in cucurbits. In melon, cucurbitacin B is the major compound leading to bitterness. However, the molecular mechanism underlying CuB biosynthesis in response to different conditions remains unclear. Here, we identified a set of genes involved in CPPU-induced CuB biosynthesis in melon fruit and proposed CmBr gene as the major regulator. Using CRISPR/Cas9 gene editing, we confirmed CmBr's role in regulating CuB biosynthesis under CPPU treatment. We further discovered a CPPU-induced MYB-related transcription factor, CmRSM1, which specifically binds to the Myb motif within the CmBr promoter and activates its expression. Moreover, we developed an introgression line by introducing the mutated Cmbr gene into an elite variety and eliminated CPPU-induced bitterness, demonstrating its potential application in breeding. This study offers a valuable tool for breeding high-quality non-bitter melon varieties and provides new insights into the regulation of secondary metabolites under environmental stresses.

8.
J Virol ; 97(10): e0112423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792002

RESUMO

IMPORTANCE: Many plant proteins and some proteins from plant pathogens are dually targeted to chloroplasts and mitochondria, and are supposed to be transported along the general pathways for organellar protein import, but this issue has not been explored yet. Moreover, organellar translocon receptors exist as families of several members whose functional specialization in different cargos is supposed but not thoroughly studied. This article provides novel insights into such topics showing for the first time that an exogenous protein, the melon necrotic spot virus coat protein, exploits the common Toc/Tom import systems to enter both mitochondria and chloroplasts while identifying the involved specific receptors.


Assuntos
Arabidopsis , Proteínas do Capsídeo , Cloroplastos , Mitocôndrias , Nicotiana , Proteínas de Plantas , Receptores de Superfície Celular , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Cloroplastos/virologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Transporte Proteico , Receptores de Superfície Celular/metabolismo
9.
Insect Mol Biol ; 33(3): 218-227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319237

RESUMO

Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agriculturally and economically important pest worldwide that has developed resistance to ß-cypermethrin. Glutathione S-transferases (GSTs) have been reported to be involved in the detoxification of insecticides in insects. We have found that both ZcGSTd6 and ZcGSTd10 were up-regulated by ß-cypermethrin induction in our previous study, so we aimed to explore their potential relationship with ß-cypermethrin tolerance in this study. The heterologous expression of ZcGSTd6 and ZcGSTd10 in Escherichia coli showed significantly high activities against 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters of ZcGSTd6 and ZcGSTd10 were determined by Lineweaver-Burk. The Vmax and Km of ZcGSTd6 were 0.50 µmol/min·mg and 0.3 mM, respectively. The Vmax and Km of ZcGSTd10 were 1.82 µmol/min·mg and 0.53 mM. The 3D modelling and molecular docking results revealed that ß-cypermethrin exhibited a stronger bounding to the active site SER-9 of ZcGSTd10. The sensitivity to ß-cypermethrin was significantly increased by 18.73% and 27.21%, respectively, after the knockdown of ZcGSTd6 and ZcGSTd10 by using RNA interference. In addition, the inhibition of CDNB at 50% (IC50) and the inhibition constants (Ki) of ß-cypermethrin against ZcGSTd10 were determined as 0.41 and 0.33 mM, respectively. The Ki and IC50 of ß-cypermethrin against ZcSGTd6 were not analysed. These results suggested that ZcGSTd10 could be an essential regulator involved in the tolerance of Z. cucurbitae to ß-cypermethrin.


Assuntos
Glutationa Transferase , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Tephritidae , Animais , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Simulação de Acoplamento Molecular , Piretrinas/farmacologia , Interferência de RNA , Tephritidae/genética , Tephritidae/enzimologia , Tephritidae/efeitos dos fármacos , Tephritidae/metabolismo
10.
Ann Bot ; 133(2): 305-320, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38041589

RESUMO

BACKGROUND AND AIMS: Given the lack of specific studies on floral development in melon (Cucumis melo L.), we carried out an extensive study involving morphological and transcriptomic analyses to characterize floral development in this species. METHODS: Using an andromonoecious line, we analysed the development of floral buds in male and hermaphrodite flowers with both light microscopy and scanning electron microscopy. Based on flower lengths, we established a correlation between the developmental stages and four main episodes of floral development and conducted an extensive RNA sequencing analysis of these episodes. KEY RESULTS: We identified 12 stages of floral development, from the appearance of the floral meristems to anthesis. The main structural differences between male and hermaphrodite flowers appeared between stages 6 and 7; later stages of development leading to the formation of organs and structures in both types of flowers were also described. We analysed the gene expression patterns of the four episodes in flower development to find the genes that were specific to each given episode. Among others, we identified genes that defined the passage from one episode to the next according to the ABCDE model of floral development. CONCLUSIONS: This work combines a detailed morphological analysis and a comprehensive transcriptomic study to enable characterization of the structural and molecular mechanisms that determine the floral development of an andromonoecious genotype in melon. Taken together, our results provide a first insight into gene regulation networks in melon floral development that are crucial for flowering and pollen formation, highlighting potential targets for genetic manipulation to improve crop yield of melon in the future.


Assuntos
Cucurbitaceae , Cucurbitaceae/genética , Perfilação da Expressão Gênica/métodos , Flores , Reprodução , Genes Reguladores , Regulação da Expressão Gênica de Plantas
11.
Prostaglandins Other Lipid Mediat ; : 106877, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079610

RESUMO

There is controversial data on the impacts of bitter melon (Momordica charantia) supplementations on anthropometric indices. Thus, we aimed to clarify this role of bitter melon through a systematic review, and meta-analysis of the trials. All clinical trials conducted on the impact of bitter melon on anthropometric indices were published until August 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. Overall, 10 studies with 448 individuals were included in the meta-analysis. Meta-analysis of 10 trials with 448 participants revealed no significant reductions in body weight (BW) (WMD: 0.04 Kg; 95%CI: -0.16 to 0.25; P =0.651), body mass index (BMI) (WMD: -0.18kg/m2; 95%CI: -0.43 to 0.07; P =0.171), waist circumference (WC) (WMD: -0.95cm; 95% CI: -3.05 to 1.16; p =0.372), and percentage of body fat (PBF) (WMD: -0.99; 95% CI: -2.33 to 0.35; p =0.141) following bitter melon supplementation. There was no significant impact of bitter melon supplementation on BW, BMI, WC, and PBF. More large-scale and high-quality RCTs are necessary to confirm these results.

12.
Epidemiol Infect ; 152: e78, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705587

RESUMO

In September 2023, the UK Health Security Agency identified cases of Salmonella Saintpaul distributed across England, Scotland, and Wales, all with very low genetic diversity. Additional cases were identified in Portugal following an alert raised by the United Kingdom. Ninety-eight cases with a similar genetic sequence were identified, 93 in the United Kingdom and 5 in Portugal, of which 46% were aged under 10 years. Cases formed a phylogenetic cluster with a maximum distance of six single nucleotide polymorphisms (SNPs) and average of less than one SNP between isolates. An outbreak investigation was undertaken, including a case-control study. Among the 25 UK cases included in this study, 13 reported blood in stool and 5 were hospitalized. One hundred controls were recruited via a market research panel using frequency matching for age. Multivariable logistic regression analysis of food exposures in cases and controls identified a strong association with cantaloupe consumption (adjusted odds ratio: 14.22; 95% confidence interval: 2.83-71.43; p-value: 0.001). This outbreak, together with other recent national and international incidents, points to an increase in identifications of large outbreaks of Salmonella linked to melon consumption. We recommend detailed questioning and triangulation of information sources to delineate consumption of specific fruit varieties during Salmonella outbreaks.


Assuntos
Surtos de Doenças , Intoxicação Alimentar por Salmonella , Humanos , Portugal/epidemiologia , Masculino , Adulto , Feminino , Reino Unido/epidemiologia , Pessoa de Meia-Idade , Criança , Adolescente , Estudos de Casos e Controles , Adulto Jovem , Idoso , Pré-Escolar , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia , Cucumis melo/microbiologia , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/classificação , Lactente , Idoso de 80 Anos ou mais , Filogenia
13.
J Chem Ecol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722477

RESUMO

Zeugodacus cucurbitae and Z. tau are two major fruit fly pests of cucurbitaceous plants in the tropical and subtropical regions. The former species has a broader host range and wider world distribution than the latter. With global climate change, Z. tau shows great potential for geographical expansion with several invasion records in recent years. Males of both species are attracted to cue lure (CL) (and raspberry ketone (RK), a deacetyl derivative of CL), a common male lure used in fruit fly population detection, monitoring and control programs. Males of both species are also known to respond to zingerone (ZN), which are produced by some rainforest orchids. Previous studies have shown that fruit fly-male lure interactions are unique to species and lure types, and significantly impact the success of a lure-based fruit fly control program. We seek to compare the attraction of Z. cucurbitae and Z. tau males to CL, RK and ZN via Probit behavioral assays. Our results showed that CL is more attractive to Z. cucurbitae and Z. tau males than RK, while ZN is a poor lure for both species. Attraction Z. tau to CL is slightly lower than Z. cucurbitae, but the former is at least 1.71 times less attractive to RK than the latter. Together with published information on species' sexual development, our current study indicates a lure-based control program via male annihilation technique for Z. tau will be more challenging than Z. cucurbitae and should incorporate other integrated pest management strategies for a desirable outcome.

14.
Biomed Chromatogr ; 38(2): e5779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050189

RESUMO

To clarify the residue behavior and possible dietary risk of abamectin in fresh corn, bitter melon, and Fritillaria, a method was developed for the simultaneous determination of abamectin residues in fresh corn, bitter melon, and Fritillaria by QuEChERS (quick, easy, cheap, effective, rugged, safe) ultra-performance liquid chromatography-tandem mass spectrometry. The mean recovery of abamectin in fresh corn, bitter melon, and Fritillaria was 86.48%-107.80%, and the relative standard deviation was 2.07%-10.12%. The detection rates of abamectin residues in fresh corn, bitter melon, and Fritillaria were 62.50%, 87.50%, and 80.00%, respectively. The residues of abamectin in fresh corn, bitter melon, and Fritillaria were not more than 0.020, 0.019, and 0.087 mg/kg, respectively. Based on these results, dietary risk assessment showed that the risk content of abamectin residues in long- and short-term dietary exposure for Chinese consumers was 61.57% and 0.41%-1.11%, respectively, indicating that abamectin in fresh corn, bitter melon, and Fritillaria in the market would not pose a significant risk to consumers.


Assuntos
Fritillaria , Ivermectina/análogos & derivados , Momordica charantia , Resíduos de Praguicidas , Momordica charantia/química , Zea mays , Medição de Risco , Resíduos de Praguicidas/análise
15.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582574

RESUMO

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Assuntos
Sementes , Tephritidae , Masculino , Animais , Camundongos , Filogenia , Hibridização in Situ Fluorescente , Tephritidae/genética , Controle de Insetos/métodos , Espermatogênese/genética , Fertilidade/genética , Resposta ao Choque Térmico
16.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256205

RESUMO

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Assuntos
Ascomicetos , Melhoramento Vegetal , Genes Dominantes , Erysiphe
17.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892198

RESUMO

Carpel number (CN) is an important trait affecting the fruit size and shape of melon, which plays a crucial role in determining the overall appearance and market value. A unique non-synonymous single nucleotide polymorphism (SNP) in CmCLAVATA3 (CmCLV3) is responsible for the variation of CN in C. melo ssp. agrestis (hereafter agrestis), but it has been unclear in C. melo ssp. melo (hereafter melo). In this study, one major locus controlling the polymorphism of 5-CN (multi-CN) and 3-CN (normal-CN) in melo was identified using bulked segregant analysis (BSA-seq). This locus was then fine-mapped to an interval of 1.8 Mb on chromosome 12 using a segregating population containing 1451 progeny. CmCLV3 is still present in the candidate region. A new allele of CmCLV3, which contains five other nucleotide polymorphisms, including a non-synonymous SNP in coding sequence (CDS), except the SNP reported in agrestis, was identified in melo. A cis-trans test confirmed that the candidate gene, CmCLV3, contributes to the variation of CNs in melo. The qRT-PCR results indicate that there is no significant difference in the expression level of CmCLV3 in the apical stem between the multi-CN plants and the normal-CN plants. Overall, this study provides a genetic resource for melon fruit development research and molecular breeding. Additionally, it suggests that melo has undergone similar genetic selection but evolved into an independent allele.


Assuntos
Cucumis melo , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Alelos , Mapeamento Cromossômico , Cucumis melo/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Genes de Plantas , Fenótipo , Proteínas de Plantas/genética , Locos de Características Quantitativas
18.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063071

RESUMO

Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.


Assuntos
Cucurbitaceae , Melatonina , Nanopartículas , Poliaminas , Plântula , Selênio , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Selênio/farmacologia , Melatonina/farmacologia , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/efeitos dos fármacos , Cucurbitaceae/metabolismo , Nanopartículas/química , Poliaminas/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612499

RESUMO

Melatonin (MT) is a vital hormone factor in plant growth and development, yet its potential to influence the graft union healing process has not been reported. In this study, we examined the effects of MT on the healing of oriental melon scion grafted onto squash rootstock. The studies indicate that the exogenous MT treatment promotes the lignin content of oriental melon and squash stems by increasing the enzyme activities of hydroxycinnamoyl CoA ligase (HCT), hydroxy cinnamaldehyde dehydrogenase (HCALDH), caffeic acid/5-hydroxy-conifer aldehyde O-methyltransferase (COMT), caffeoyl-CoA O-methyltransferase (CCoAOMT), phenylalanine ammonia-lyase (PAL), 4-hydroxycinnamate CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). Using the oriental melon and squash treated with the exogenous MT to graft, the connection of oriental melon scion and squash rootstock was more efficient and faster due to higher expression of wound-induced dedifferentiation 1 (WIND1), cyclin-dependent kinase (CDKB1;2), target of monopteros 6 (TMO6), and vascular-related NAC-domain 7 (VND7). Further research found that the exogenous MT increased the lignin content of the oriental melon scion stem by regulating CmCAD1 expression, and then accelerated the graft healing process. In addition, the root growth of grafted seedlings treated with the exogenous MT was more vigorous.


Assuntos
Cucumis melo , Melatonina , Melatonina/farmacologia , Lignina , Aldeídos , Quinases Ciclina-Dependentes
20.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892093

RESUMO

One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.


Assuntos
Processamento Alternativo , Cucumis melo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA