Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122674, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357436

RESUMO

Proper management of mine waste plays a crucial role in minimizing environmental impacts. One potential solution to tackle this problem involves transforming mine waste rock into soil to facilitate the process of mine restoration. The aim of this study was to assess the mineralogical, chemical, and physical characteristics of technosol derived from phosphate mine waste dumps. Following this evaluation, a novel rehabilitation strategy was proposed. For this purpose, a total of 32 samples were systematically collected across a 4 ha area of technosols, which had been established in accordance with the waste rock soil rehabilitation strategy involving geomorphic reshaping. According to the findings, phosphate mining left the soil with a sandy texture, resulting in a degraded soil structure with severely unfavorable crop growth conditions, notably poor stability, and low water retention. The chemistry of the studied soils was characterized by the dominance of CaO (29.02 wt%± 1.01) > SiO2 (27.61 wt% ± 0.61) > P2O5 (11.34 wt% ± 0.23) > MgO (5.97 wt%±0.16). Mineralogically, the samples were mainly formed by quartz, dolomite, calcite, apatite, and clay minerals. The prevalence of dolomite played a significant role in enhancing the accessibility of Mg as an essential nutrient and the occurrence of apatite in the soil resulted in the presence of P2O5. However, the abundance of Ca was linked to three major minerals: calcite, apatite, and dolomite. X-ray fluorescence analyses demonstrated that the concentrations of Fe2O3, K2O, and SO3 did not exceed 2 wt%.Organic matter, represented by SOC <0.2% and N < 0.02%, demonstrated an extraordinary deficiency in the study area. The analysis of element bioavailability confirmed that the soil was rich in Ca (10383,26 mg/kg), Mg (278,47 mg/kg), Zn (12,82 mg/kg), and Cu (3,7 mg/kg) but deficient in other essential nutrients such as P, K, S, Mn, and Fe. Our research results provide a set of recommendations aimed at enhancing existing mine rehabilitation practices applicable to both pre- and post-rehabilitation phases, leveraging automated mineralogy and circular economy principles. Notably, we propose a rehabilitation strategy to be implemented prior to the geomorphic reshaping phase, which is intended to reduce costs and efforts associated with soil reconstitution.

2.
J Synchrotron Radiat ; 30(Pt 6): 1183, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850564

RESUMO

The name of an author in the article by Saurette et al. (2022) [J. Synchrotron Rad. 29, 1198-1208] is corrected.

3.
Environ Res ; 216(Pt 2): 114573, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243050

RESUMO

Tungsten (W) is a critical material that is widely used in military applications, electronics, lighting technology, power engineering and the automotive and aerospace industries. In recent decades, overexploitation of W has generated large amounts of mine waste rocks, which generate elevated content of toxic elements and cause serious adverse effects on ecosystems and public health. Microorganisms are considered important players in toxic element migrations from waste rocks. However, the understanding of how the microbial community structure varies in W mine waste rocks and its key driving factors is still unknown. In this study, high-throughput sequencing methods were used to determine the microbial community profiles along a W content gradient in W mine waste rocks. We found that the microbial community structures showed clear differences across the different W levels in waste rocks. Notably, arsenic (As), instead of W and nutrients, was identified as the most important predictor influencing microbial diversity. Furthermore, our results also showed that As is the most important environmental factor that regulates the distribution patterns of ecological clusters and keystone ASVs. Importantly, we found that the dominant genera have been regulated by As and were widely involved in As biogeochemical cycling in waste rocks. Taken together, our results have provided useful information about the response of microbial communities to W mine waste rocks.


Assuntos
Arsênio , Microbiota , Tungstênio
4.
Environ Geochem Health ; 45(7): 4439-4460, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811700

RESUMO

Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Dióxido de Carbono/química , Minerais/química , Carbonato de Cálcio/química , Carbonatos/análise , Ferro , Ouro
5.
J Synchrotron Radiat ; 29(Pt 5): 1198-1208, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073878

RESUMO

High-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) is a spectroscopic method that allows for increased spectral feature resolution, and greater selectivity to decrease complex matrix effects compared with conventional XANES. XANES is an ideal tool for speciation of elements in solid-phase environmental samples. Accurate speciation of As in mine waste materials is important for understanding the mobility and toxicity of As in near-surface environments. In this study, linear combination fitting (LCF) was performed on synthetic spectra generated from mixtures of eight measured reference compounds for both HERFD-XANES and transmission-detected XANES to evaluate the improvement in quantitative speciation with HERFD-XANES spectra. The reference compounds arsenolite (As2O3), orpiment (As2S3), getchellite (AsSbS3), arsenopyrite (FeAsS), kankite (FeAsO4·3.5H2O), scorodite (FeAsO4·2H2O), sodium arsenate (Na3AsO4), and realgar (As4S4) were selected for their importance in mine waste systems. Statistical methods of principal component analysis and target transformation were employed to determine whether HERFD improves identification of the components in a dataset of mixtures of reference compounds. LCF was performed on HERFD- and total fluorescence yield (TFY)-XANES spectra collected from mine waste samples. Arsenopyrite, arsenolite, orpiment, and sodium arsenate were more accurately identified in the synthetic HERFD-XANES spectra compared with the transmission-XANES spectra. In mine waste samples containing arsenopyrite and either scorodite or kankite, LCF with HERFD-XANES measurements resulted in fits with smaller R-factors than concurrently collected TFY measurements. The improved accuracy of HERFD-XANES analysis may provide enhanced delineation of As phases controlling biogeochemical reactions in mine wastes, contaminated soils, and remediation systems.


Assuntos
Poluentes do Solo , Trióxido de Arsênio , Mineração , Espectroscopia por Absorção de Raios X/métodos
6.
J Environ Manage ; 302(Pt A): 114030, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749079

RESUMO

The Strathcona Waste Water Treatment System (SWWTS; Sudbury, ON, Canada) has received mill tailings from Ni/Cu ore processing from 1970 to present. Demonstration-scale, multi-layer cover systems were installed on selected tailings deposition cells at the SWWTS. The cover systems are comprised of an upper layer of organic carbon-rich material, composed of a layer biosolids fertilizer along with composted municipal food and yard waste, then a layer of desulfurized, fine-grained tailings. Organic carbon components used in these covers promote microbial communities that consume O2, thus decreasing sulfide oxidation rates in the underlying tailings. The aim of this study was to investigate the microbiology of the cover systems and the underlying tailings, using a combination of culture-dependent (most probable number) and culture-independent (16S rRNA gene amplicon sequencing) techniques, and assess the impact of the organic component of the cover system four to six years after implementation. Most tailings samples were characterized by circumneutral bulk pH and low concentrations of dissolved metals. The presence of the organic cover resulted in elevated counts of sulfate-reducers (by two orders of magnitude, compared to control samples) immediately below the organic cover, as well as an increased abundance of heterotrophic species (∼108 cells g-1) at greater depth (∼4 m) in the tailings profile. Mineral-oxidizing microorganisms were also present in the tailings, with neutrophilic sulfur-oxidizers dominating the samples (mean ∼106 cells g-1). Relative abundances of sulfur- and/or iron-oxidizers determined by sequencing ranged from 0.5 to 18.3% of total reads (mean ∼5.6% in amended tailings) and indicated the presence of local microenvironments with ongoing sulfide oxidation. This work provides a detailed characterization of the microbiology of a tailings impoundment with an organic cover, highlighting the opportunities associated with monitoring microbial processes in such remediation systems.


Assuntos
Metais , Microbiota , Biossólidos , Ferro , RNA Ribossômico 16S
7.
J Environ Manage ; 314: 115074, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468433

RESUMO

A double waste stream problem arises from the increasing use of electrical and electronic equipment and their energy consumption: potentially toxic wastes from the equipment itself and potential acid mine drainage from the waste of the coal mines that provide the fuel to cover the energy demand. CEReS (Co-processing of Coal Mine & Electronic Wastes: Novel Resources for a Sustainable Future) is a novel method to co-process the coal mine and low-grade PCBs waste to reduce their environmental impacts while producing metals and other valuable products. The aim of this study is to investigate whether CEReS method is more environmentally friendly than the conventional practices of landfilling and incineration. Based on a Polish coal mine case study, our study found that the CEReS method could potentially eliminate the environmental impacts related to toxicity but increase the climate change impacts by ten times. A sensitivity analysis has shown that using a lower carbon electricity mix could reduce the climate change and fossil depletion impacts. It is also recommended to reduce water and energy requirements in some stages of the method.


Assuntos
Resíduo Eletrônico , Incineração , Animais , Carvão Mineral/análise , Estágios do Ciclo de Vida , Metais , Mineração
8.
Ecotoxicol Environ Saf ; 208: 111757, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396080

RESUMO

A pot study was performed to assess the phytoremedial potential of Cymbopogon citratus (D.C.) Staf. for reclamation of coal mine overburden dump wastes, emphasizing the outcome of amendment practices using cow dung manure (CM) and garden soil mixtures on the revegetation of over-burden wastes (OB). Wastes amendment with cow dung manure and garden soil resulted in a significant increase in soil health and nutrient status along with an increment in the phytoavailability of Zn and Cu which are usually considered as micronutrients, essential for plant growth. A significant increment in the total biomass of lemongrass by 38.6% under CM20 (OB: CM 80:20) was observed along with improved growth parameters under amended treatments as compared to OB (100% waste). Furthermore, the proportionate increases in the assimilative rate, water use efficiency, and chlorophyll fluorescence have been observed with the manure application rates. Lemongrass emerged out to be an efficient metal-tolerant herb species owing to its high metal-tolerance index (>100%). Additionally, lemongrass efficiently phytostablized Pb and Ni in the roots. Based on the strong plant performances, the present study highly encourages the cultivation of lemongrass in coal mining dumpsites for phytostabilization coupled with cow-dung manure application (20% w/w).


Assuntos
Biodegradação Ambiental , Cymbopogon/fisiologia , Esterco , Poluentes do Solo/metabolismo , Animais , Biomassa , Bovinos , Carvão Mineral , Minas de Carvão , Cymbopogon/crescimento & desenvolvimento , Metais , Desenvolvimento Vegetal , Raízes de Plantas/química , Plantas , Solo , Poluentes do Solo/análise
9.
Ecotoxicol Environ Saf ; 208: 111495, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33099139

RESUMO

Different techniques have been developed for the remediation of Cu contaminated soils, being the phytoremediation a sustainable and environmentally friendly strategy, but its use in mine tailings is scarce. Arbuscular mycorrhizal fungi (AMF) can decrease the Cu concentration in plants by favouring the stabilization of this metal through different mechanisms such as the production of glomalin, immobilization in the fungal wall of hyphae and spores, and the storage of Cu in vacuoles. Additionally, the use of organic amendments promotes the beneficial effects produced by AMF and improves plant growth. Based on the above, the aim of this study was to determine the effect of AMF inoculation and compost application at different doses on the growth of Oenothera picensis in a Cu mine tailing. One group of plants were inoculated with Claroideoglomus claroideum (CC) and other was non-inoculated (NM). Both CC and NM were grown for two month under greenhouse conditions in pots with the Cu mine tailing, which also had increasing compost doses (0%, 2.5%, 5%, and 10%). Results showed greater biomass production of O. picensis by CC up to 2-fold compared with NM. This effect was improved by the compost addition, especially at doses of 5% and 10%. Therefore, the increase of mycorrhizal and nutritional parameters in O. picensis, and the decreasing of Cu availability in the mine tailing, promoted the production of photosynthetic pigments together with the plant growth, which is of importance to accomplish phytoremediation programs in Cu mine tailings.


Assuntos
Compostagem/métodos , Cobre/metabolismo , Fungos/fisiologia , Oenothera/microbiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Cobre/análise , Fungos/metabolismo , Mineração , Micorrizas/metabolismo , Micorrizas/fisiologia , Oenothera/crescimento & desenvolvimento , Oenothera/metabolismo , Solo/química , Poluentes do Solo/análise
10.
J Environ Manage ; 299: 113553, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425497

RESUMO

Mine waste can create long-term and occasionally catastrophic environmental degradation. Due diligence of mine waste in the form of monitoring and maintenance requires a constant supply of societal resources. Furthermore, mine waste is unlikely to disappear with current mining methods and instead, it is more likely to accumulate at a faster rate due to decreasing primary ore grades and increasing societal demands. However, mine waste can be a societal asset, as it can offer an alternative source of partly critical raw materials (CRMs) that can augment primary sources and provide an opportunity to mitigate supply-risk while ensuring sustainability and easing geopolitical tensions. Cobalt is a critical raw material that is largely a by-product of mining of copper, nickel and platinum-group element ores. It is an element that the renewable energy and high-tech sectors critically depend on and for which no reasonable substitutes currently exist. The majority of the global cobalt production stems from the Central African Copperbelt. Published cobalt production figures for the Central African Copperbelt were used to evaluate cobalt tailings from the Central African Copperbelt. As part of a waste valorisation framework that focuses on primarily on the technical aspects of mine waste valorisation, this study assesses the application of key geostatistical methods, such as kriging and conditional simulation, followed by uniform conditioning, to evaluate the resource potential in a hypothetical copper-cobalt tailing deposit from the Central African Copperbelt. The results indicate that methods such as traditional algorithmic kriging, sequential Gaussian simulation and uniform conditioning are highly effective tools in resource modelling of mine waste. The resource assessment framework component developed in this study makes it possible to systematically characterise, profile and model any mine waste storage facility and thus supplements other framework components discussed in an accompanying paper to maximise mine waste utilization.


Assuntos
Cobre , Mineração , Metais , Níquel , Zâmbia
11.
Environ Geochem Health ; 43(5): 2065-2080, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392897

RESUMO

This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.


Assuntos
Carbonato de Cálcio , Resíduos Industriais/análise , Mineração , Carbonato de Cálcio/análise , Compostos de Cálcio/análise , Compostos de Cálcio/química , Dióxido de Carbono/química , Carbonatos/análise , Carbonatos/química , Monitoramento Ambiental , Poluição Ambiental , Magnésio/análise , Malásia , Metais Pesados/análise , Minerais/análise , Óxidos/análise , Óxidos/química , Oligoelementos/análise
12.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32033946

RESUMO

The abandoned Kam Kotia Mine (Canada) is undergoing remediation. A geosynthetic-clay-liner (GCL) cover system was installed in the Northern Impounded Tailings (NIT) area in 2008 to isolate acid-generating tailings from water and oxygen and to mitigate sulfide oxidation. The cover system includes a vegetated uppermost soil layer underlain by a granular protective layer (sand), a clay moisture-retaining layer, a GCL, a granular capillary-break material (cushion sand), and a crushed waste rock-capillary break layer installed above the tailings. The goal of this study was to characterize the microbiology of the covered tailings to assess the performance of the cover system for mitigating sulfide bio-oxidation. Tailings beneath the GCL were characterized by high sulfur and low carbon content. The bulk pH of the tailings pore water was circumneutral (∼5.5 to 7.3). Total genomic DNA was extracted from 36 samples recovered from the constituent layers of the cover system and the underlying tailings and was analyzed in triplicates using high-throughput amplicon sequencing of 16S rRNA genes. Iron-oxidizing, sulfur-oxidizing, sulfate-reducing, and aerobic heterotrophic microorganisms were enumerated by use of most probable number enumeration, which identified heterotrophs as the most numerous group of culturable microorganisms throughout the depth profile. Low relative abundances and viable counts of microorganisms that catalyze transformations of iron and sulfur in the covered tailings, compared to previous studies on unreclaimed tailings, indicate that sulfide oxidation rates have decreased due to the presence of the GCL. Characterization of the microbial community can provide a sensitive indicator for assessing the performance of remediation systems.IMPORTANCE Mining activities are accompanied by significant environmental and financial liabilities, including the release of acid mine drainage (AMD). AMD is caused by accelerated chemical and biological oxidation of sulfide minerals in mine wastes and is characterized by low pH and high concentrations of sulfate and metal(loid)s. Microorganisms assume important roles in the catalysis of redox reactions. Our research elucidates linkages among the biogeochemistry of mine wastes and remediation systems and microbial community and activity. This study assesses the performance and utility of geosynthetic-clay-liner cover systems for management of acid-generating mine wastes. Analyses of the microbial communities in tailings isolated beneath an engineered cover system provide a better understanding of the complex biogeochemical processes involved in the redox cycling of key elements, contribute to the remediation of mine wastes, and provide a valuable tool for assessment of the effectiveness of the remediation system.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Recuperação e Remediação Ambiental , Sedimentos Geológicos/microbiologia , Resíduos Industriais , Mineração , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Cobre/metabolismo , Sedimentos Geológicos/química , Ontário , Zinco/metabolismo
13.
Rev Environ Contam Toxicol ; 249: 29-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30806801

RESUMO

In recent times there has been remarkable development in the field of soil ecotoxicology and risk assessment (RA) models. It is, however, debatable if these RA models are robust representatives for worldwide relevance. In order to investigate this, the current overview aims to address heavy metal threats to soil life in southern Africa by investigating present knowledge and consequences for RA using research in southern Africa as a case. To this end, the focus is on southern African soils, soil life and living conditions. To critically discuss these issues, we report on extensive research conducted in the southern African context and looked how comparable these findings are to RA models employed in the western world. This is done by providing an inventory of selected studies focused on the ecotoxicity of metals towards soil life. It is concluded that there is a dearth of information on southern African soil life, most of which are laboratory-based studies carried out by a handful of researchers. Future research incorporating the available information into a soil ecosystem assessment procedure is paramount. It is recommended that a starting point to tackle this might be the development of holistic sight-specific guidelines for ecological risk assessment at larger spatial scales (km2) which takes into cognizance landscapes, vegetation and faunal characteristics.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , África Austral , Medição de Risco , Solo
14.
J Environ Manage ; 269: 110764, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32425169

RESUMO

Residues from passive treatment of acid mine drainage (AMD) have variable chemical stability and could regenerate contaminated drainage. Stabilization/solidification (S/S) can prevent contaminant leaching. Residues were collected from a tri-step AMD field passive treatment system, operated for 6 years at the reclaimed Lorraine mine site, Quebec, Canada. General Use Portland cement (GU), blended binders based on GU with pozzolanic additives (ground-granulated blast-furnace slag; GGBFS and fly ash type C; FAC) were used as hydraulic binders, in proportions (w/w %) of 100GU, 20GU/80GGBFS, and 50GU/50FAC, respectively. Residues were mixed with wood ash (35%) and sand (25%), while reference samples (100% sand) were also prepared. Prior to S/S, raw materials were characterized. The S/S effectiveness was assessed mineralogically and mechanically (unconfined compressive strength; UCS). Environmental behavior assessment (static vs semi-dynamic leaching tests) was also performed. UCS results showed that strength increase with age. At 56 days, GU- (1.3 MPa) and GU/GGBFS (0.7 MPa) satisfied Quebec's strength requirements for landfill disposal (0.7 MPa), but not GU/FAC (0.6 MPa), while all samples satisfied USEPA criteria (0.35 MPa). The semi-dynamic test showed that all elements can be immobilized successfully in GU- and GU/GGBFS. The GU binder had the best stabilizing performance. Based on USEPA requirements, S/S using GU, GGBFS, and FAC can be also considered for contaminant immobilization in AMD passive treatment residues. Finally, the comparison between replicates using Student's t-test indicated good reproducibility of S/S treatment.


Assuntos
Cinza de Carvão , Mineração , Canadá , Materiais de Construção , Quebeque , Reprodutibilidade dos Testes
15.
J Environ Manage ; 265: 110511, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275241

RESUMO

Nonferrous metal mining activities produce enormous amounts of tailings that contain high concentrations of toxic chemicals threatening human health and the environment. This risk could be alleviated using remediation agents such as biochar, as proposed by others. However, contradictory evidence indicates that biochar can increase or sometimes decrease bioavailable concentrations depending on the selection of metal(loid)s in mine tailings. Here three biochars derived from different raw stocks were used to treat mine tailings samples. Chemical analyses indicated that all biochars favored the stabilization of Cd, Cr, Cu, Pb, and Zn, as well as the mobilization of As and Sb. The barley root elongation bioassay showed that the tailings toxicity was only partially diminished (up to 55.8%) or even elevated (up to 20.7%) by biochar treatment. Similar results were also observed from microbial enzyme assays (increased up to 28.3% or decreased up to 24.0%). Further analyses showed that these toxic effects correlated well with the relative toxicity index (R2 = 0.66 to 0.88). Toxicity testing coupled with the use of a toxicity prediction model presented here suggested that the release of As and Sb from tailings compromised the favorable effects of biochar treatment on toxic cationic metals. Such information is of paramount importance when taking countermeasures for improving bioremediation technologies.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Metais , Mineração
16.
Chem Geol ; 522: 26-37, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371834

RESUMO

The reactivity of co-occurring arsenic (As) and uranium (U) in mine wastes was investigated using batch reactors, microscopy, spectroscopy, and aqueous chemistry. Analyses of field samples collected in proximity to mine wastes in northeastern Arizona confirm the presence of As and U in soils and surrounding waters, as reported in a previous study from our research group. In this study, we measured As (< 0.500 to 7.77 µg/L) and U (0.950 to 165 µg/L) in waters, as well as mine wastes (< 20.0 to 40.0 mg/kg As and < 60.0 to 110 mg/kg U) and background solids (< 20.0 mg/kg As and < 60.0 mg/kg U). Analysis with X-ray fluorescence (XRF) and electron microprobe show the co-occurrence of As and U with iron (Fe) and vanadium (V). These field conditions served as a foundation for additional laboratory experiments to assess the reactivity of metals in these mine wastes. Results from laboratory experiments indicate that labile and exchangeable As(V) was released to solution when solids were sequentially reacted with water and magnesium chloride (MgCl2), while limited U was released to solution with the same reactants. The predominance of As(V) in mine waste solids was confirmed by X-ray absorption near edge (XANES) analysis. Both As and U were released to solution after reaction of solids in batch experiments with HCO3 -. Both X-ray photoelectron spectroscopy (XPS) and XANES analysis determined the predominance of Fe(III) in the solids. Mössbauer spectroscopy detected the presence of nano-crystalline goethite, Fe(II) and Fe(III) in (phyllo)silicates, and an unidentified mineral with parameters consistent with arsenopyrite or jarosite in the mine waste solids. Our results suggest that As and U can be released under environmentally relevant conditions in mine waste, which is applicable to risk and exposure assessment.

17.
Environ Geochem Health ; 41(6): 2397-2411, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30972516

RESUMO

Antimony (Sb) is a harmful element, and Sb pollution is one of the typical environmental issues in China, meaning that understanding of the geochemical behaviors of Sb is the key to control the fate of environmental Sb pollution. Sb tends to migrate in soluble form in the water-sediment system, but the fate of dissolved Sb is poorly known. Duliujiang river basin, located in southwest China, provided us with a natural aqueous environment to study the transport of Sb because of its unique geological and geographical characteristics. Physicochemical properties (pH, EC, Eh, DO, Flux), trace elements (Sb, As, Sr) and main ions (Ca2+, Mg2+, SO42-) concentrations in mining-impacted waters were measured in order to determine their distribution and migration potential. There are three types of water samples; they are main stream waters (pH of 7.33-8.43), tributary waters (pH of 6.85-9.12) and adit waters with pH values ranging from 7.57 to 9.76, respectively. Results showed that adit waters contained elevated concentrations of Sb reaching up to 13350 µg L-1 from the abandoned Sb mines, and mine wastes contained up to 8792 mg kg-1 Sb from the historical mine dumps are the important sources of Sb pollution in the Duliujiang river basin. Dissolved Sb had strong migration ability in streams, while its attenuation mainly depended on the dilution of tributary water with large flow rate. In the exit section of the Duliujiang river basin, which had only 10 µg L-1 of average Sb concentration. The simple deionized water extraction was designed to investigate the ability of Sb likely to dissolve from the mine wastes. The results indicated that a greater solubility of Sb in alkaline (pH of 7.11-8.16) than in acid (pH of 3.03-4.45) mine wastes, suggesting that mine wastes contained high Sb concentrations, could release Sb into solution in the natural river waters. Furthermore, the fate of Sb pollution depends on the comprehensive treatment of abandoned adit waters and mine wastes in the upper reaches of the drainage basin.


Assuntos
Antimônio/análise , Mineração , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Rios/química
18.
Environ Geochem Health ; 40(4): 1495-1512, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28620816

RESUMO

Historical mining activities in the village of Kank (in the northern part of the Kutná Hora ore district, Czech Republic) produced large amounts of mine wastes which contain significant amounts of metal(loid) contaminants such as As, Cu, Pb, and Zn. Given the proximity of residential communities to these mining residues, we investigated samples of mine waste (n = 5), urban soil (n = 6), and road dust (n = 5) with a special focus on the solid speciation of As, Cu, Pb, and Zn using a combination of methods (XRD, SEM/EDS, oxalate extractions), as well as on in vitro bioaccessibility in simulated gastric and lung fluids to assess the potential exposure risks for humans. Bulk chemical analyses indicated that As is the most important contaminant in the mine wastes (~1.15 wt%), urban soils (~2900 mg/kg) and road dusts (~440 mg/kg). Bioaccessible fractions of As were quite low (4-13%) in both the simulated gastric and lung fluids, while the bioaccessibility of metals ranged between <0.01% (Pb) and 68% (Zn). The bioaccessibilities of the metal(loid)s were dependent on the mineralogy and different adsorption properties of the metal(loid)s. Based on our results, a potential health risk, especially for children, was recognized from the ingestion of mine waste materials and highly contaminated urban soil. Based on the risk assessment, arsenic was found to be the element posing the greatest risk.


Assuntos
Arsênio/análise , Cobre/análise , Poeira/análise , Chumbo/análise , Mineração , Poluentes do Solo/análise , Zinco/análise , Disponibilidade Biológica , República Tcheca , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Difração de Raios X
19.
Environ Geochem Health ; 40(3): 1037-1049, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28497229

RESUMO

Exposure studies have linked arsenic (As) ingestion with disease in mining-affected populations; however, inhalation of mine waste dust as a pathway for pulmonary toxicity and systemic absorption has received limited attention. A biologically relevant extractant was used to assess the 24-h lung bioaccessibility of As in dust isolated from four distinct types of historical gold mine wastes common to regional Victoria, Australia. Mine waste particles less than 20 µm in size (PM20) were incubated in a simulated lung fluid containing a major surface-active component found in mammalian lungs, dipalmitoylphosphatidylcholine. The supernatants were extracted, and their As contents measured after 1, 2, 4, 8 and 24 h. The resultant As solubility profiles show rapid dissolution followed by a more modest increasing trend, with between 75 and 82% of the total 24-h bioaccessible As released within the first 8 h. These profiles are consistent with the solubility profile of scorodite, a secondary As-bearing phase detected by X-ray diffraction in one of the investigated waste materials. Compared with similar studies, the cumulative As concentrations released at the 24-h time point were extremely low (range 297 ± 6-3983 ± 396 µg L-1), representing between 0.020 ± 0.002 and 0.036 ± 0.003% of the total As in the PM20.


Assuntos
Arsênio/química , Poeira/análise , Ouro , Resíduos Industriais/análise , Pulmão/química , Mineração , Modelos Biológicos , Arsênio/farmacocinética , Disponibilidade Biológica , Líquidos Corporais/química , Humanos , Técnicas In Vitro , Tamanho da Partícula , Reprodutibilidade dos Testes , Solubilidade , Vitória , Difração de Raios X
20.
Mine Water Environ ; 37(1): 31-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31666771

RESUMO

The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 µS/cm for mine water discharges in the Appalachian region has been suggested to protect aquatic life and the environment. A USGS screening-level leach test was applied to individual strata from three cores collected from a surface mine site in the Central Appalachian region to generate preliminary conductivity rankings, which were used to classify strata for two disposal scenarios: (i) Unmodified Scenario, which included all extracted strata and (ii) Modified Scenario, which excluded 15% (by mass) of the overburden materials with the highest conductivities. We evaluated overburden leaching conductivity using EPA Method 1627 in 18 dry-wet cycles, generating conductivities of 1,020-1,150 µS/cm for the Unmodified Scenario and 624-979 µS/cm for the Modified Scenario. Hence, overburden segregation was successful in reducing the leachate conductivity, but did not reach the proposed benchmark. The leachate was dominated by sulfate in the first four cycles and by bicarbonates in cycles 5-18 in columns with higher sulfur content, while bicarbonates were dominant throughout experiments with lower sulfur content in overburden. The use of conductivity rankings, isolation of potentially problematic overburden strata, and appropriate materials management could reduce conductivity in Central Appalachian streams and other surface mining areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA