Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
FASEB J ; 38(10): e23655, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38767449

RESUMO

The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Autofagia , Células-Tronco Mesenquimais , Mitocôndrias , Miócitos Cardíacos , Serina-Treonina Quinases TOR , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Doxorrubicina/farmacologia , Insuficiência Cardíaca/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/transplante , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Serina-Treonina Quinases TOR/metabolismo
2.
Cell Biol Int ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682666

RESUMO

The role of heavy metals such as lead (Pb) and cadmium (Cd) in the etiology of many diseases has been proven. Also, these heavy metals can affect the normal mitochondrial function. Mitochondrial administration therapy is one of the methods used by researchers to help improve mitochondrial defects and diseases. The use of isolated mitochondria as a therapeutic approach has been investigated in in vivo and in vitro studies. Accordingly, in this study, the effects of mitochondrial administration on the improvement of toxicity caused by Pb and Cd in renal proximal tubular cells (RPTC) have been investigated. The results showed that treatment to Pb and Cd caused an increase in the level of free radicals, lipid peroxidation (LPO) content, mitochondrial and lysosomal membrane damage, and also a decrease in the reduced glutathione content in RPTC. In addition, reports have shown an increase in oxidized glutathione content and changes in energy (ATP) levels. Following, the results have shown the protective role of mitochondrial administration in improving the toxicity caused by Pb and Cd in RPTC. Furthermore, the mitochondrial internalization into RPT cells is mediated through actin-dependent endocytosis. So, it could be suggested that the treatment of Pb- and Cd-induced cytotoxicity in RPTC could be carried out through mitochondria administration.

3.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069350

RESUMO

Mitochondrial dysregulation, such as mitochondrial complex I deficiency, increased oxidative stress, perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Initiating from the observation that mitochondrial toxins cause PD-like symptoms and mitochondrial DNA mutations are associated with increased risk of PD, many mutated genes linked to familial forms of PD, including PRKN, PINK1, DJ-1 and SNCA, have also been found to affect the mitochondrial features. Recent research has uncovered a much more complex involvement of mitochondria in PD. Disruption of mitochondrial quality control coupled with abnormal secretion of mitochondrial contents to dispose damaged organelles may play a role in the pathogenesis of PD. Furthermore, due to its bacterial ancestry, circulating mitochondrial DNAs can function as damage-associated molecular patterns eliciting inflammatory response. In this review, we summarize and discuss the connection between mitochondrial dysfunction and PD, highlighting the molecular triggers of the disease process, the intra- and extracellular roles of mitochondria in PD as well as the therapeutic potential of mitochondrial transplantation.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/genética , Mitocôndrias/patologia , DNA Mitocondrial/genética , Mitofagia/fisiologia
4.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373260

RESUMO

Previously, we have shown that mitochondrial transplantation in the sepsis model has immune modulatory effects. The mitochondrial function could have different characteristics dependent on cell types. Here, we investigated whether the effects of mitochondrial transplantation on the sepsis model could be different depending on the cell type, from which mitochondria were isolated. We isolated mitochondria from L6 muscle cells, clone 9 liver cells and mesenchymal stem cells (MSC). We tested the effects of mitochondrial transplantation using in vitro and in vivo sepsis models. We used the LPS stimulation of THP-1 cell, a monocyte cell line, as an in vitro model. First, we observed changes in mitochondrial function in the mitochondria-transplanted cells. Second, we compared the anti-inflammatory effects of mitochondrial transplantation. Third, we investigated the immune-enhancing effects using the endotoxin tolerance model. In the in vivo polymicrobial fecal slurry sepsis model, we examined the survival and biochemical effects of each type of mitochondrial transplantation. In the in vitro LPS model, mitochondrial transplantation with each cell type improved mitochondrial function, as measured by oxygen consumption. Among the three cell types, L6-mitochondrial transplantation significantly enhanced mitochondrial function. Mitochondrial transplantation with each cell type reduced hyper-inflammation in the acute phase of in vitro LPS model. It also enhanced immune function during the late immune suppression phase, as shown by endotoxin tolerance. These functions were not significantly different between the three cell types of origin for mitochondrial transplantation. However, only L6-mitochondrial transplantation significantly improved survival compared to the control in the polymicrobial intraabdominal sepsis model. The effects of mitochondria transplantation on both in vitro and in vivo sepsis models differed depending on the cell types of origin for mitochondria. L6-mitochondrial transplantation might be more beneficial in the sepsis model.


Assuntos
Lipopolissacarídeos , Sepse , Humanos , Lipopolissacarídeos/metabolismo , Mitocôndrias/metabolismo , Sepse/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo
5.
Platelets ; 34(1): 2151996, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36529914

RESUMO

Platelets are known to improve the wound-repair capacity of mesenchymal stem cells (MSCs) by transferring mitochondria intercellularly. This study aimed to investigate whether direct transfer of mitochondria (pl-MT) isolated from platelets could enhance wound healing in vitro using a cell-based model. Wound repairs were assessed by 2D gap closure experiment in wound scratch assay using human dermal fibroblasts (hDFs). Results demonstrated that pl-MT were successfully internalized into hDFs. It increased cell proliferation and promoted the closure of wound gap. Importantly, pl-MT suppressed both intracellular and mitochondrial ROS production induced by hydrogen peroxide, cisplatin, and TGF-ß in hDFs. Taken together, these results suggest that pl-MT transfer might be used as a potential therapeutic strategy for wound repair.


What is the context? During the wound healing process, abnormal regulation of ROS and inflammation delays the healing process, resulting in chronic non-healing wounds.Mitochondria are key organelles responsible for the ROS generation. Mitochondrial dysfunction has been implicated in delayed wound repair.Mitochondria transfer, which utilizes intact mitochondria isolated from healthy cells to recover from disease, has been applied in various clinical studies, but additional evidence is needed to apply it to wound healing.What is new? In this study, we chose platelets as a cell source for mitochondrial transfer. We isolated the functional mitochondria from platelets and applied them to wound healing.What is the impact? This study provides evidence that platelet-derived mitochondria (pl-MT) improve the wound healing progress by increasing the viability of dermal fibroblasts and suppressing intracellular and mitochondrial ROS production.Platelets have also been demonstrated to be a suitable cell source for mitochondrial transfer.


Assuntos
Plaquetas , Cicatrização , Humanos , Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibroblastos , Mitocôndrias
6.
Pediatr Cardiol ; 43(6): 1251-1263, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35238957

RESUMO

Barth Syndrome (BTHS) is an X-linked mitochondrial cardioskeletal myopathy caused by defects in TAFAZZIN, a gene responsible for cardiolipin remodeling. Altered mitochondrial levels of cardiolipin lead to cardiomyopathy (CM), muscle weakness, exercise intolerance, and mortality. Cardiac risk factors predicting outcome are unknown. Therefore, we conducted a longitudinal observational study to determine risk factors for outcome in BTHS. Subjects with minimum two evaluations (or one followed by death or transplant) were included. Cardiac size, function, and QTc data were measured by echocardiography and electrocardiography at 7 time points from 2002 to 2018. Analysis included baseline, continuous, and categorical variables. Categorical risk factors included prolonged QTc, abnormal right ventricle fractional area change (RV FAC), left ventricle (LV) or RV non-compaction, and restrictive CM phenotype. The association between variables and cardiac death or transplant (CD/TX) was assessed. Median enrollment age was 7 years (range 0.5-22; n = 44). Transplant-free survival (TFS) was 74.4% at 15 years from first evaluation. The cohort demonstrated longitudinal declines in LV size and stroke volume z-scores (end-diastolic volume, p = 0.0002; stroke volume p < 0.0001), worsening RV FAC (p = 0.0405), and global longitudinal strain (GLS) (p = 0.0001) with stable ejection (EF) and shortening (FS) fraction. CD/TX subjects (n = 9) displayed worsening LV dilation (p = 0.0066), EF (p ≤ 0.0001), FS (p = 0.0028), and RV FAC (p = .0032) versus stability in TFS. Having ≥ 2 categorical risk factors predicted CD/TX (p = 0.0073). Over 15 years, 25% of BTHS subjects progressed to CD/TX. Those with progressive LV enlargement, dysfunction, and multiple cardiac risk factors warrant increased surveillance and intense therapy.


Assuntos
Síndrome de Barth , Síndrome de Barth/genética , Cardiolipinas , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Fatores de Risco , Volume Sistólico/fisiologia
7.
Crit Care ; 25(1): 20, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413559

RESUMO

BACKGROUND: Sepsis has a high mortality rate, but no specific drug has been proven effective, prompting the development of new drugs. Immunologically, sepsis can involve hyperinflammation, immune paralysis, or both, which might pose challenges during drug development. Recently, mitochondrial transplantation has emerged as a treatment modality for various diseases involving mitochondrial dysfunction, but it has never been tested for sepsis. METHODS: We isolated mitochondria from L6 muscle cells and umbilical cord mesenchymal stem cells and tested the quality of the isolated mitochondria. We conducted both in vivo and in vitro sepsis studies. We investigated the effects of intravenous mitochondrial transplantation on cecal slurry model in rats in terms of survival rate, bacterial clearance rate, and the immune response. Furthermore, we observed the effects of mitochondrial transplantation on the immune reaction regarding both hyperinflammation and immune paralysis. To do this, we studied early- and late-phase cytokine production in spleens from cecal slurry model in rats. We also used a lipopolysaccharide (LPS)-stimulated human PBMC monocyte model to confirm the immunological effects of mitochondrial transplantation. Apoptosis and the intrinsic apoptotic pathway were investigated in septic spleens. RESULTS: Mitochondrial transplantation improved survival and bacterial clearance. It also mitigated mitochondrial dysfunction and apoptosis in septic spleens and attenuated both hyperinflammation and immune paralysis in the spleens of cecal slurry model in rats. This effect was confirmed with an LPS-stimulated human PBMC study. CONCLUSIONS: In rat polymicrobial cecal slurry model, the outcome is improved by mitochondrial transplantation, which might have an immunomodulatory effect.


Assuntos
Ceco/fisiopatologia , Mitocôndrias/imunologia , Mitocôndrias/fisiologia , Imunologia de Transplantes/imunologia , Animais , Western Blotting/métodos , Ceco/imunologia , Modelos Animais de Doenças , Ratos , Sepse/fisiopatologia , Sepse/terapia
8.
Biotechniques ; 76(4): 125-134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420889

RESUMO

Tweetable abstract Mitochondrial transplantation has been used to treat various diseases associated with mitochondrial dysfunction. Here, we highlight the considerations in quality control mechanisms that should be considered in the context of mitochondrial transplantation.


Assuntos
Mitocôndrias , Medicina de Precisão
9.
Stem Cell Res Ther ; 15(1): 321, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334429

RESUMO

BACKGROUND: Despite the pivotal role of fat grafting in plastic, reconstructive, and aesthetic surgery, inconsistent survival rates of transplanted adipose tissue, primarily due to early ischemic and hypoxic insults, remain a significant challenge. The infusion of healthy mitochondria has emerged as a promising intervention to support tissue recovery from ischemic, hypoxic, and other types of damages across various organ systems. OBJECTIVES: This study aims to evaluate the impact of supplementing human adipose tissue grafts with healthy exogenous mitochondria on their volume and mass retention rates when transplanted into the subcutaneous layers of nude mice. This approach seeks to improve and optimize fat grafting techniques. METHODS: Human adipose tissues were preconditioned with exogenous mitochondria (10 µg/mL), a combination of exogenous mitochondria and the inhibitor Dyngo-4a, Dyngo-4a alone, or PBS, and then transplanted into the subcutaneous tissue of 24 nude mice. Samples were harvested at 1 and 3 months post-transplantation for analysis of mass and volume retention. The structural morphology and integrity of the adipose tissues were assessed using Hematoxylin and Eosin (H&E) staining. RESULTS: Mitochondrial preconditioning significantly enhanced the retention of mass and volume in fat grafts, demonstrating superior structural morphology and integrity compared to the control group. CONCLUSIONS: This study highlights the potential of exogenous mitochondrial augmentation in fat transplantation to significantly improve fat graft survival, thereby optimizing the success of fat grafting procedures.


Assuntos
Tecido Adiposo , Camundongos Nus , Mitocôndrias , Animais , Camundongos , Mitocôndrias/metabolismo , Humanos , Tecido Adiposo/metabolismo , Sobrevivência de Enxerto/fisiologia , Feminino
10.
Iran J Pharm Res ; 23(1): e146033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108644

RESUMO

Background: Doxorubicin (DOX) is used in the treatment of various cancers and has good effectiveness. However, its therapeutic use is limited due to its effects on various organs and healthy cells. Doxorubicin can affect the kidneys and cause toxicity. Evidence shows that DOX induces nephrotoxicity through oxidative stress. Objectives: In this research, we examined the effect of mitochondrial transplantation on improving mitochondrial and cellular toxicity caused by DOX on renal proximal tubular cells (RPTCs). Methods: The research measured 7 toxicity parameters, including cell lysis, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) decline, GSH and GSSG content, lipid peroxidation (LPO), adenosine triphosphate (ATP) content, and Caspase-3 activity (the final mediator of apoptosis). Active fresh mitochondria were prepared from Wistar rat kidney. Results: The findings indicated that DOX caused cytotoxicity in RPTCs. Additionally, DOX induced oxidative stress by increasing the level of reactive oxygen species, reducing glutathione content, and elevating lipid peroxidation. Moreover, it led to damage to the mitochondrial membrane, increased caspase-3 activity, and decreased ATP content. Mitochondrial transplantation, as a new therapeutic approach, reduced oxidative stress, mitochondrial membrane damage, and apoptosis caused by DOX in RPTCs. Furthermore, this therapeutic approach increased the ATP content in RPTCs. Conclusions: Our study suggests that this therapeutic approach could be helpful in the treatment of drug-induced nephrotoxicity.

11.
Mitochondrion ; 78: 101902, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38768694

RESUMO

Traumatic brain injury (TBI) is a global public-health problem. Astrocytes, and their mitochondria, are important factors in the pathogenesis of TBI-induced secondary injury. Mitochondria extracted from healthy tissues and then transplanted have shown promise in models of a variety of diseases. However, the effect on recipient astrocytes is unclear. Here, we isolated primary astrocytes from newborn C57BL/6 mice, one portion of which was used to isolate mitochondria, and another was subjected to stretch injury (SI) followed by transplantation of the isolated mitochondria. After incubation for 12 h, cell viability, mitochondrial dysfunction, calcium overload, redox stress, inflammatory response, and apoptosis were improved. Live-cell imaging showed that the transplanted mitochondria were incorporated into injured astrocytes and fused with their mitochondrial networks, which was in accordance with the changes in the expression levels of markers of mitochondrial dynamics. The astrocytic IKK/NF-κB pathway was decelerated whereas the AMPK/PGC-1α pathway was accelerated by transplantation. Together, these results indicate that exogenous mitochondria from untreated astrocytes can be incorporated into injured astrocytes and fuse with their mitochondrial networks, improving cell viability by ameliorating mitochondrial dysfunction, redox stress, calcium overload, and inflammation.


Assuntos
Astrócitos , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Mitocôndrias , Animais , Astrócitos/metabolismo , Mitocôndrias/metabolismo , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Apoptose , Cálcio/metabolismo , Dinâmica Mitocondrial
12.
Adv Sci (Weinh) ; : e2403201, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137351

RESUMO

Angiogenesis is crucial for successful bone defect repair. Co-transplanting Bone Marrow Stromal Cells (BMSCs) and Endothelial Cells (ECs) has shown promise for vascular augmentation, but it face challenges in hostile tissue microenvironments, including poor cell survival and limited efficacy. In this study, the mitochondria of human BMSCs are isolated and transplanted to BMSCs from the same batch and passage number (BMSCsmito). The transplanted mitochondria significantly boosted the ability of BMSCsmito-ECs to promote angiogenesis, as assessed by in vitro tube formation and spheroid sprouting assays, as well as in vivo transplantation experiments in balb/c mouse and SD rat models. The Dll4-Notch1 signaling pathway is found to play a key role in BMSCsmito-induced endothelial tube formation. Co-transplanting BMSCsmito with ECs in a rat cranial bone defect significantly improves functional vascular network formation, and improve bone repair outcomes. These findings thus highlight that mitochondrial transplantation, by acting through the DLL4-Notch1 signaling pathway, represents a promising therapeutic strategy for enhancing angiogenesis and improving bone repair. Hence, mitochondrial transplantation to BMSCS as a therapeutic approach for promoting angiogenesis offers valuable insights and holds much promise for innovative regenerative medicine therapies.

13.
Front Cell Dev Biol ; 11: 1207748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465011

RESUMO

Background: The transfer of mitochondria from healthy mesenchymal stem cells (MSCs) to injured MSCs has been shown to have potential therapeutic benefits for neural cell post-ischemic stroke. Specifically, functional mitochondria can perform their normal functions after being internalized by stressed cells, leading to host cell survival. However, while this approach shows promise, there is still a lack of understanding regarding which neural cells can internalize functional mitochondria and the regulatory mechanisms involved. To address this gap, we investigated the ability of different neural cells to internalize exogenous functional mitochondria extracted from MSCs. Methods: Functional mitochondria (F-Mito) isolated from umbilical cord derived-MSCs (UCMSCs) were labeled with lentivirus of HBLV-mito-dsred-Null-PURO vector. The ability of stressed cells to internalize F-Mito was analyzed using a mouse (C57BL/6 J) middle cerebral artery occlusion (MCAO) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. The cell viability was measured by CCK-8 kit. Time-course of intracellular ROS levels in stressed cells were analyzed by DCFH-DA staining after OGD/R and F-Mito treatment. MitoSOX, Mitotracker and WGA labeling were used to assess the relationship between ROS levels and the uptake of F-Mito at the single-cell level. Pharmacological modulation of ROS was performed using acetylcysteine (ROS inhibitor). Results: Our findings demonstrate that neurons and endothelial cells are more effective at internalizing mitochondria than astrocytes, both in vitro and in vivo, using an ischemia-reperfusion model. Additionally, internalized F-Mito decreases host cell reactive oxygen species (ROS) levels and rescues survival. Importantly, we found that the ROS response in stressed cells after ischemia is a crucial determinant in positively mediating the internalization of F-Mito by host cells, and inhibiting the generation of ROS chemicals in host cells may decrease the internalization of F-Mito. These results offer insight into how exogenous mitochondria rescue neural cells via ROS response in an ischemic stroke model. Overall, our study provides solid evidence for the translational application of MSC-derived mitochondria as a promising treatment for ischemic stroke.

14.
Life Sci ; 332: 122116, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739165

RESUMO

AIM: We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS: Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS: We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid ß-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE: This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Síndrome Metabólica , Ratos , Animais , Síndrome Metabólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Fígado Gorduroso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Citocinas/metabolismo , Lipídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos
15.
Curr Neuropharmacol ; 21(5): 1100-1116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36089791

RESUMO

Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases. Impaired mitochondrial function has been linked to the pathogenesis of several human neurological disorders. Given the significant contribution of mitochondrial dysfunction in neurological disorders, there has been considerable interest in developing therapies that can attenuate mitochondrial abnormalities and proffer neuroprotective effects. Unfortunately, therapies that target specific components of mitochondria or oxidative stress pathways have exhibited limited translatability. To this end, mitochondrial transplantation therapy (MTT) presents a new paradigm of therapeutic intervention, which involves the supplementation of healthy mitochondria to replace the damaged mitochondria for the treatment of neurological disorders. Prior studies demonstrated that the supplementation of healthy donor mitochondria to damaged neurons promotes neuronal viability, activity, and neurite growth and has been shown to provide benefits for neural and extra-neural diseases. In this review, we discuss the significance of mitochondria and summarize an overview of the recent advances and development of MTT in neurodegenerative and neurovascular disorders, particularly Parkinson's disease, Alzheimer's disease, and stroke. The significance of MTT is emerging as they meet a critical need to develop a diseasemodifying intervention for neurodegenerative and neurovascular disorders.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/transplante , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Animais
16.
Bioeng Transl Med ; 8(1): e10365, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684073

RESUMO

Mitochondrial dysfunction is considered to be a key contributor to the development of heart failure. Replacing injured mitochondria with healthy mitochondria to restore mitochondrial bioenergy in myocardium holds great promise for cardioprotection after infarction. This study aimed to investigate whether direct transplantation of exogenous mitochondria derived from mesenchymal stem cells (MSC-mt) is beneficial and superior in protecting cardiac function in a mouse model of myocardial infarction (MI) compared to mitochondria derived from skin fibroblast (FB-mt) and to explore the underlying mechanisms from their effects on the endothelial cells. The isolated MSC-mt presented intact mitochondrial morphology and activity, as determined by electron microscopy, JC-1 mitochondrial membrane potential assay, and seahorse assay. Direct injection of MSC-mt into the peri-infarct region in a mouse MI model enhanced blood vessel density, inhibited cardiac remodeling and apoptosis, thus improving heart function compared with FB-mt group. The injected MSC-mt can be tracked in the endothelial cells. In vitro, the fluorescence signal of MSC-mt can be detected in human umbilical vein endothelial cells (HUVECs) by confocal microscopy and flow cytometry after coculture. Compared to FB-mt, MSC-mt more effectively protected the HUVECs from oxidative stress-induced apoptosis and reduced mitochondrial production of reactive oxygen species. MSC-mt presented superior capacity in inducing tube formation, enhancing SCF secretion, ATP content and cell proliferation in HUVECs compared to FB-mt. Mechanistically, MSC-mt administration alleviated oxidative stress-induced endothelial senescence via activation of ERK pathway. These findings suggest that using MSCs as sources of mitochondria is feasible and that proangiogenesis could be the mechanism by which MSC-mt transplantation attenuates MI. MSC-mt transplantation might serve as a new therapeutic strategy for treating MI.

17.
Exp Ther Med ; 25(2): 99, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36761005

RESUMO

Mitochondrial transplantation is a popular field of research in cell-free therapy. Menstrual stem cells (MenSCs) are potential donor cells for provision of foreign mitochondria. The present study aimed to investigate the potential effects of MenSC-derived mitochondria on ovarian cancer from the perspective of protein expression profiling. MenSCs were harvested from menstrual blood. The mitochondria were isolated from MenSCs and ovarian cancer cell line SKOV3. A label-free mitochondria proteomics and analysis were performed by comparing the protein expression in mitochondria of MenSCs and SKOV3 cells. The differentially expressed proteins with fold-change >2 were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and protein domain enrichment, protein interaction networks and parallel reaction monitoring (PRM) analysis. In total, 592 proteins that were found to have increased expression in the mitochondria of MenSCs were analyzed. Functional enrichment analysis revealed these proteins were enriched in metabolism-associated pathway entries including 'oxidative phosphorylation' (OXPHOS) pathway. PRM analysis confirmed that four of 6 candidate proteins in the OXPHOS pathway showed similar increasing trends. The protein domain enrichment analysis showed that domains such as 'thioredoxin domain' were significantly enriched. Based on these findings, it was hypothesized that mitochondria from MenSCs have the potential to enhance progression of ovarian cancer likely mediated by the enrichment of OXPHOS-associated metabolic pathways.

18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(6): 751-759, 2022 Jun 15.
Artigo em Zh | MEDLINE | ID: mdl-35712934

RESUMO

Objective: To investigate the effect of M2-like macrophage/microglia-derived mitochondria transplantation in treatment of mouse spinal cord injury (SCI). Methods: BV2 cells were classified into M1 (LPS treatment), M2 (IL-4 treatment), and M0 (no treatment) groups. After receiving M1 and M2 polarization, BV2 cells received microscopic observation, immunofluorescence staining [Arginase-1 (Arg-1)] and flow cytometry [inducible nitric oxide synthase (iNOS), Arg-1] to determine the result of polarization. MitoSox Red and 2, 7-dichlorodi-hydrofluorescein diacetate (DCFH-DA) stainings were used to evaluate mitochondrial function difference. Mitochondria was isolated from M2-like BV2 cells through differential velocity centrifugation for following transplantation. Then Western blot was used to measure the expression levels of the relevant complexes (complexes Ⅱ, Ⅲ, Ⅳ, and Ⅴ) in the oxidative phosphorylation (OXPHOS), and compared with M2-like BV2 cells to evaluate whether the mitochondria were obtained. Thirty-six female C57BL/6 mice were randomly divided into 3 groups ( n=12). Mice from sham group were only received the T 10 laminectomy. After the T 10 spinal cord injury (SCI) model was prepared in the SCI group and mitochondria transplantation (MT) group, mitochondrial storage solution and mitochondria (100 µg) derived from M2-like BV2 cells were injected into the injured segment, respectively. After operation, the Basso Mouse Scale (BMS) score was performed to evaluate the motor function recovery. And immunofluorescence staining, lycopersicon esculentum agglutinin (LEA)-FITC staining, and ELISA [vascular endothelial growth factor A (VEGFA)] were also performed. Results: After polarization induction, BV2 cells in M1 and M2 groups showed specific morphological changes of M1-like and M2-like macrophages, respectively. Immunofluorescence staining showed that the positive expression of M2-like macrophages marker (Arg-1) was significantly higher in M2 group than in M0 group and M1 group ( P<0.05). Flow cytometry showed that the expression of M1-like macrophage marker (iNOS) was significantly higher in M1 group than in M0 group and M2 group ( P<0.05), and the expression of Arg-1 was significantly higher in M2 group than in M0 group and M1 group ( P<0.05). MitoSox Red and DCFH-DA stainings showed that the fluorescence intensity of the M2 group was significantly lower than that of the M1 group ( P<0.05), and there was no significant difference with the M0 group ( P>0.05). The M2-like BV2 cells-derived mitochondria was identified through Western blot assay. Animal experiments showed that the BMS scores of MT group at 21 and 28 days after operation were significantly higher than those of SCI group ( P<0.05). At 14 days after operation, the number of iNOS-positive cells in MT group was significantly lower than that in SCI group ( P<0.05), but still higher than that in sham group ( P<0.05); the number of LEA-positive cells and the expression of VEGFA in MT group were significantly more than those in the other two groups ( P<0.05). Conclusion: M2-like macrophage/microglia-derived mitochondria transplantation can promote angiogenesis and inhibit inflammatory M1-like macrophage/microglia polarization after mouse SCI to improve function recovery.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Feminino , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Mitochondrion ; 65: 80-87, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623561

RESUMO

Mitochondria are dynamic organelles responsible for energy production and cell metabolism. Disorders in mitochondrial function impair tissue integrity and have been implicated in multiple human diseases. Rather than constrained in host cells, mitochondria were recently found to actively travel between cells through nanotubes or extracellular vesicles. Mitochondria transportation represents a key mechanism of intercellular communication implicated in metabolic homeostasis, immune response, and stress signaling. Here we reviewed recent progress in mitochondria transfer under physiological and pathological conditions. Specifically, tumor cells imported mitochondria from adjacent cells in the microenvironment which potentially modulated cancer progression. Intercellular mitochondria trafficking also inspired therapeutic intervention of human diseases with mitochondria transplantation. Artificial mitochondria, generated through mitochondria genome engineering or mitochondria-nucleus hybridization, further advanced our understanding of mitochondrial biology and its therapeutic potential. Innovative tools and animal models of mitochondria transplantation will assist the development of new therapies for mitochondrial dysfunction-related diseases.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Animais , Comunicação Celular , Homeostase , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia
20.
Neurosurgery ; 89(1): E49-E59, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862620

RESUMO

BACKGROUND: Peripheral nerve injuries result in muscle denervation and apoptosis of the involved muscle, which subsequently reduces mitochondrial content and causes muscle atrophy. The local injection of mitochondria has been suggested as a useful tool for restoring the function of injured nerves or the brain. OBJECTIVE: To determine outcomes following the administration of isolated mitochondria into denervated muscle after nerve injury that have not been investigated. METHODS: Muscle denervation was conducted in a sciatic nerve crushed by a vessel clamp and the denervated gastrocnemius muscle was subjected to 195 µg hamster green fluorescent protein (GFP)-mitochondria intramuscular infusion for 10 min. RESULTS: The mitochondria were homogeneously distributed throughout the denervated muscle after intramuscular infusion. The increases in caspase 3, 8-oxo-dG, Bad, Bax, and ratio of Bax/Bcl-2 levels in the denervated muscle were attenuated by mitochondrial infusion, and the downregulation of Bcl-2 expression was prevented by mitochondrial infusion. In addition, the decrease in the expression of desmin and the acetylcholine receptor was counteracted by mitochondrial infusion; this effect paralleled the amount of distributed mitochondria. The restoration of the morphology of injured muscles and nerves was augmented by the local infusion of mitochondria. Mitochondrial infusion also led to improvements in sciatic functional indexes, compound muscle action potential amplitudes, and conduction latencies as well as the parameters of CatWalk (Noldus) gait analysis. CONCLUSION: The local infusion of mitochondria can successfully prevent denervated muscle atrophy and augment nerve regeneration by reducing oxidative stress in denervated muscle.


Assuntos
Lesões por Esmagamento , Mitocôndrias , Lesões por Esmagamento/metabolismo , Humanos , Denervação Muscular , Músculo Esquelético , Compressão Nervosa , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA