Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002685

RESUMO

The Golgi compartment performs a number of crucial roles in the cell. However, the exact molecular mechanisms underlying these actions are not fully defined. Pathogenic mutations in genes encoding Golgi proteins may serve as an important source for expanding our knowledge. For instance, mutations in the gene encoding Transmembrane protein 165 (TMEM165) were discovered as a cause of a new type of congenital disorder of glycosylation (CDG). Comprehensive studies of TMEM165 in different model systems, including mammals, yeast, and fish uncovered the new realm of Mn2+ homeostasis regulation. TMEM165 was shown to act as a Ca2+/Mn2+:H+ antiporter in the medial- and trans-Golgi network, pumping the metal ions into the Golgi lumen and protons outside. Disruption of TMEM165 antiporter activity results in defects in N- and O-glycosylation of proteins and glycosylation of lipids. Impaired glycosylation of TMEM165-CDG arises from a lack of Mn2+ within the Golgi. Nevertheless, Mn2+ insufficiency in the Golgi is compensated by the activity of the ATPase SERCA2. TMEM165 turnover has also been found to be regulated by Mn2+ cytosolic concentration. Besides causing CDG, recent investigations have demonstrated the functional involvement of TMEM165 in several other pathologies including cancer and mental health disorders. This systematic review summarizes the available information on TMEM165 molecular structure, cellular function, and its roles in health and disease.


Assuntos
Antiporters , Complexo de Golgi , Manganês , Humanos , Manganês/metabolismo , Complexo de Golgi/metabolismo , Animais , Antiporters/metabolismo , Antiporters/genética , Glicosilação , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia
2.
J Cell Mol Med ; 28(17): e18553, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239860

RESUMO

Microbes are involved in a wide range of biological processes and are closely associated with disease. Inferring potential disease-associated microbes as the biomarkers or drug targets may help prevent, diagnose and treat complex human diseases. However, biological experiments are time-consuming and expensive. In this study, we introduced a new method called iPALM-GLMF, which modelled microbe-disease association prediction as a problem of non-negative matrix factorization with graph dual regularization terms and L 2 , 1 $$ {L}_{2,1} $$ norm regularization terms. The graph dual regularization terms were used to capture potential features in the microbe and disease space, and the L 2 , 1 $$ {L}_{2,1} $$ norm regularization terms were used to ensure the sparsity of the feature matrices obtained from the non-negative matrix factorization and to improve the interpretability. To solve the model, iPALM-GLMF used a non-negative double singular value decomposition to initialize the matrix factorization and adopted an inertial Proximal Alternating Linear Minimization iterative process to obtain the final matrix factorization results. As a result, iPALM-GLMF performed better than other existing methods in leave-one-out cross-validation and fivefold cross-validation. In addition, case studies of different diseases demonstrated that iPALM-GLMF could effectively predict potential microbial-disease associations. iPALM-GLMF is publicly available at https://github.com/LiangzheZhang/iPALM-GLMF.


Assuntos
Algoritmos , Humanos , Biologia Computacional/métodos , Microbiota
3.
J Physiol ; 602(5): 855-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376957

RESUMO

Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001). V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1  kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairs V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance for V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.


Assuntos
Mioglobina , Corrida , Camundongos , Animais , Mioglobina/genética , Dióxido de Nitrogênio , Corrida/fisiologia , Oxigênio , Teste de Esforço , Camundongos Knockout , Consumo de Oxigênio/fisiologia
4.
J Physiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316014

RESUMO

It remains unclear whether feedback from group III/IV muscle afferents is of continuous significance for regulating the pulmonary response during prolonged (>5 min), steady-state exercise. To elucidate the influence of these sensory neurons on hyperpnoea, gas exchange efficiency, arterial oxygenation and acid-base balance during prolonged locomotor exercise, 13 healthy participants (4 females; 21 (3) years, V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ : 46 (8) ml/kg/min) performed consecutive constant-load cycling bouts at ∼50% (20 min), ∼75% (20 min) and ∼100% (5 min) of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ with intact (CTRL) and pharmacologically attenuated (lumbar intrathecal fentanyl; FENT) group III/IV muscle afferent feedback from the legs. Pulmonary responses were continuously recorded and arterial blood (radial catheter) periodically collected throughout the exercise. Pulmonary gas exchange efficiency was evaluated using the alveolar-arterial P O 2 ${{P}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ difference ( A - a D O 2 ${\mathrm{A - a}}{{D}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ). There were no differences in any of the variables of interest between conditions before the start of the exercise. Pulmonary ventilation was up to 20% lower across all intensities during FENT compared to CTRL exercise (P < 0.001) and this hypoventilation was accompanied by an up to 10% lower arterial P O 2 ${{P}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and a 2-4 mmHg higher P C O 2 ${{P}_{{\mathrm{C}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ (both P < 0.001). The exercise-induced widening of A - a D O 2 ${\mathrm{A - a}}{{D}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ was up to 25% larger during FENT compared to CTRL (P < 0.001). Importantly, the differences developed within the first minute of each stage and persisted, or further increased, throughout the remainder of each bout. These findings reflect a critical and time-independent significance of feedback from group III/IV leg muscle afferents for continuously regulating the ventilatory response, gas exchange efficiency, arterial oxygenation and acid-base balance during human locomotion. KEY POINTS: Feedback from group III/IV leg muscle afferents reflexly contributes to hyperpnoea during short duration (i.e. <5 min) locomotor exercise. Whether continuous feedback from these sensory neurons is obligatory to ensure adequate pulmonary responses during steady-state exercise of longer duration remains unknown. Lumbar intrathecal fentanyl was used to attenuate the central projection of group III/IV leg muscle afferents during prolonged locomotor exercise (i.e. 45 min) at intensities ranging from 50% to 100% of V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ . Without affecting the metabolic rate, afferent blockade compromised pulmonary ventilation and gas exchange efficiency, consistently impairing arterial oxygenation and facilitating respiratory acidosis throughout exercise. These findings reflect the time-independent significance of feedback from group III/IV muscle afferents for regulating exercise hyperpnoea and gas exchange efficiency, and thus for optimizing arterial oxygenation and acid-base balance, during prolonged human locomotion.

5.
BMC Genomics ; 25(1): 885, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304826

RESUMO

MicroRNAs (miRNAs) have been demonstrated to be closely related to human diseases. Studying the potential associations between miRNAs and diseases contributes to our understanding of disease pathogenic mechanisms. As traditional biological experiments are costly and time-consuming, computational models can be considered as effective complementary tools. In this study, we propose a novel model of robust orthogonal non-negative matrix tri-factorization (NMTF) with self-paced learning and dual hypergraph regularization, named SPLHRNMTF, to predict miRNA-disease associations. More specifically, SPLHRNMTF first uses a non-linear fusion method to obtain miRNA and disease comprehensive similarity. Subsequently, the improved miRNA-disease association matrix is reformulated based on weighted k-nearest neighbor profiles to correct false-negative associations. In addition, we utilize L 2 , 1 norm to replace Frobenius norm to calculate residual error, alleviating the impact of noise and outliers on prediction performance. Then, we integrate self-paced learning into NMTF to alleviate the model from falling into bad local optimal solutions by gradually including samples from easy to complex. Finally, hypergraph regularization is introduced to capture high-order complex relations from hypergraphs related to miRNAs and diseases. In 5-fold cross-validation five times experiments, SPLHRNMTF obtains higher average AUC values than other baseline models. Moreover, the case studies on breast neoplasms and lung neoplasms further demonstrate the accuracy of SPLHRNMTF. Meanwhile, the potential associations discovered are of biological significance.


Assuntos
Biologia Computacional , MicroRNAs , MicroRNAs/genética , Humanos , Biologia Computacional/métodos , Algoritmos , Predisposição Genética para Doença , Aprendizado de Máquina , Neoplasias Pulmonares/genética
6.
J Comput Chem ; 45(13): 969-984, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38189163

RESUMO

A set of empirical rovibrational energy levels, obtained through the MARVEL (measured active rotational-vibrational energy levels) procedure, is presented for the 13 C 16 O 2 isotopologue of carbon dioxide. This procedure begins with the collection and analysis of experimental rovibrational transitions from the literature, allowing for a comprehensive review of the literature on the high-resolution spectroscopy of 13 C 16 O 2 , which is also presented. A total of 60 sources out of more than 750 checked provided 14,101 uniquely measured and assigned rovibrational transitions in the wavenumber range of 579-13,735 cm - 1 . This is followed by a weighted least-squares refinement yielding the energy levels of the states involved in the measured transitions. Altogether 6318 empirical rovibrational energies have been determined for 13 C 16 O 2 . Finally, estimates have been given for the uncertainties of the empirical energies, based on the experimental uncertainties of the transitions. The detailed analysis of the lines and the spectroscopic network built from them, as well as the uncertainty estimates, all serve to pinpoint possible errors in the experimental data, such as typos, misassignment of quantum numbers, and misidentifications. Errors found in the literature data were corrected before including them in the final MARVEL dataset and analysis.

7.
J Comput Chem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193846

RESUMO

Using density functional theory at D3-B3LYP/aug-cc-pVDZ level combined with the conductor-like polarizable continuum model (CPCM) solvent model, a study of the IR spectrum of H 2 O $$ {\mathrm{H}}_2\mathrm{O} $$ :HCN mixtures is reported. The CPCM solvent effect notably enhances the accuracy of the IR spectra compared to gas-phase calculations, while the dielectric constant value has minimum impact on the final spectrum. An optimized methodology is suggested that effectively minimizes the root mean square deviation between theoretical and experimental data. This novel approach not only enhances the quality of the final IR spectra but also captures relevant spectral features, highlighting its potential to decipher molecular interactions in such intricate mixtures.

8.
Small ; 20(35): e2402026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38659177

RESUMO

Mn2+/MnO2 aqueous battery is a promising candidate for large-scale energy storage owing to its feature of low-cost and abundant crustal reserves. However, the inherent MnO2 shedding issue results in a limited areal capacity and poor cycling life, which prohibits its further commercialization. In this manuscript, it is revealed that the cause of shedding is the cracking of MnO2 layer due to stress. To circumvent this challenge, carbon nanotubes framework is introduced on pristine carbon felt, which provides more deposition sites and induces the formation of a porous deposition layer. Compared to the dense deposition layer on pristine carbon felt, the porous structure can effectively avoid cracking and subsequent shedding issue. Moreover, the porous deposited layer is conducive to proton diffusion and rich in defects, which facilitates the subsequent dissolution reaction. As results, the assembled Zn/Mn battery demonstrates more than 200 cycles with the areal capacity of 15 mAh cm-2 at 40 mA cm-2. Even with a high areal capacity of 40 mAh cm-2, it can still run for more than 60 cycles. This breakthrough paves a way toward practical manganese-based batteries, bringing us closer to achieve cost-effective batteries.

9.
Small ; : e2406829, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370665

RESUMO

The nickel hydroxide-based (Ni(OH)2) methanol-to-formate electrooxidation reaction (MOR) performance is greatly related to the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Hence, optimizing the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states to achieve enhanced MOR activities are highly desired. Here, cobalt (Co) and iron (Fe) doping are used to modify the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Although both dopants can broaden the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital; however, Co doping leads to an elevation in the energy level of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ highest occupied crystal orbital (HOCO), whereas Fe doping results in its reduction. Such a discrepancy in the regulation of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states stems from the disparate partial electron transfer mechanisms amongst these transition metal ions, which possess distinct energy level and occupancy of d orbitals. Motivated by this finding, the NiCoFe hydroxide is prepared and exhibited an excellent MOR performance. The results showed that the Co dopants effectively suppress the partial electron transfer from Ni to Fe, combined with the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital broadening induced by NiO6 octahedra distortion, endowing NiCoFe hydroxide with high d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ HOCO and broad d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital. It is believed that the work gives an in-depth understanding on d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states regulation in Ni(OH)2, which is beneficial for designing Ni(OH)2-based catalysts with high MOR performance.

10.
Magn Reson Med ; 92(4): 1525-1539, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38725149

RESUMO

PURPOSE: To accelerate whole-brain quantitative T 2 $$ {\mathrm{T}}_2 $$ mapping in preclinical imaging setting. METHODS: A three-dimensional (3D) multi-echo spin echo sequence was highly undersampled with a variable density Poisson distribution to reduce the acquisition time. Advanced iterative reconstruction based on linear subspace constraints was employed to recover high-quality raw images. Different subspaces, generated using exponential or extended-phase graph (EPG) simulations or from low-resolution calibration images, were compared. The subspace dimension was investigated in terms of T 2 $$ {\mathrm{T}}_2 $$ precision. The method was validated on a phantom containing a wide range of T 2 $$ {\mathrm{T}}_2 $$ and was then applied to monitor metastasis growth in the mouse brain at 4.7T. Image quality and T 2 $$ {\mathrm{T}}_2 $$ estimation were assessed for 3 acceleration factors (6/8/10). RESULTS: The EPG-based dictionary gave robust estimations of a large range of T 2 $$ {\mathrm{T}}_2 $$ . A subspace dimension of 6 was the best compromise between T 2 $$ {\mathrm{T}}_2 $$ precision and image quality. Combining the subspace constrained reconstruction with a highly undersampled dataset enabled the acquisition of whole-brain T 2 $$ {\mathrm{T}}_2 $$ maps, the detection and the monitoring of metastasis growth of less than 500 µ m 3 $$ \mu {\mathrm{m}}^3 $$ . CONCLUSION: Subspace-based reconstruction is suitable for 3D T 2 $$ {\mathrm{T}}_2 $$ mapping. This method can be used to reach an acceleration factor up to 8, corresponding to an acquisition time of 25 min for an isotropic 3D acquisition of 156 µ $$ \mu $$ m on the mouse brain, used here for monitoring metastases growth.


Assuntos
Algoritmos , Encéfalo , Imageamento Tridimensional , Imagens de Fantasmas , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos
11.
Magn Reson Med ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385473

RESUMO

PURPOSE: To improve liver proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ quantification at 0.55 T by systematically validating the acquisition parameter choices and investigating the performance of locally low-rank denoising methods. METHODS: A Monte Carlo simulation was conducted to design a protocol for PDFF and R 2 * $$ {R}_2^{\ast } $$ mapping at 0.55 T. Using this proposed protocol, we investigated the performance of robust locally low-rank (RLLR) and random matrix theory (RMT) denoising. In a reference phantom, we assessed quantification accuracy (concordance correlation coefficient [ ρ c $$ {\rho}_c $$ ] vs. reference values) and precision (using SD) across scan repetitions. We performed in vivo liver scans (11 subjects) and used regions of interest to compare means and SDs of PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements. Kruskal-Wallis and Wilcoxon signed-rank tests were performed (p < 0.05 considered significant). RESULTS: In the phantom, RLLR and RMT denoising improved accuracy in PDFF and R 2 * $$ {R}_2^{\ast } $$ with ρ c $$ {\rho}_c $$ >0.992 and improved precision with >67% decrease in SD across 50 scan repetitions versus conventional reconstruction (i.e., no denoising). For in vivo liver scans, the mean PDFF and mean R 2 * $$ {R}_2^{\ast } $$ were not significantly different between the three methods (conventional reconstruction; RLLR and RMT denoising). Without denoising, the SDs of PDFF and R 2 * $$ {R}_2^{\ast } $$ were 8.80% and 14.17 s-1. RLLR denoising significantly reduced the values to 1.79% and 5.31 s-1 (p < 0.001); RMT denoising significantly reduced the values to 2.00% and 4.81 s-1 (p < 0.001). CONCLUSION: We validated an acquisition protocol for improved PDFF and R 2 * $$ {R}_2^{\ast } $$ quantification at 0.55 T. Both RLLR and RMT denoising improved the accuracy and precision of PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements.

12.
Magn Reson Med ; 92(6): 2723-2733, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38988054

RESUMO

PURPOSE: To standardize T 2 $$ {}_2 $$ -weighted images from clinical Turbo Spin Echo (TSE) scans by generating corresponding T 2 $$ {}_2 $$ maps with the goal of removing scanner- and/or protocol-specific heterogeneity. METHODS: The T 2 $$ {}_2 $$ map is estimated by minimizing an objective function containing a data fidelity term in a Virtual Conjugate Coils (VCC) framework, where the signal evolution model is expressed as a linear constraint. The objective function is minimized by Projected Gradient Descent (PGD). RESULTS: The algorithm achieves accuracy comparable to methods with customized sampling schemes for accelerated T 2 $$ {}_2 $$ mapping. The results are insensitive to the tunable parameters, and the relaxed background phase prior produces better T 2 $$ {}_2 $$ maps compared to the strict real-value enforcement. It is worth noting that the algorithm works well with challenging T 2 $$ {}_2 $$ w-TSE data using typical clinical parameters. The observed normalized root mean square error ranges from 6.8% to 12.3% over grey and white matter, a clinically common level of quantitative map error. CONCLUSION: The novel methodological development creates an efficient algorithm that allows for T 2 $$ {}_2 $$ map generated from TSE data with typical clinical parameters, such as high resolution, long echo train length, and low echo spacing. Reconstruction of T 2 $$ {}_2 $$ maps from TSE data with typical clinical parameters has not been previously reported.


Assuntos
Algoritmos , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos
13.
Magn Reson Med ; 91(6): 2310-2319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38156825

RESUMO

PURPOSE: This study aimed to evaluate the potential of 3D EPI for improving the reliability of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted data and quantification of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ decay rate and susceptibility (χ) compared with conventional gradient-echo (GRE)-based acquisition. METHODS: Eight healthy subjects in a wide age range were recruited. Each subject received repeated scans for both GRE and EPI acquisitions with an isotropic 1 mm resolution at 3 T. Maps of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ were quantified, and their interscan differences were used to evaluate the test-retest reliability. Interprotocol differences of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ between GRE and EPI were also measured voxel by voxel and in selected regions of interest to test the consistency between the two acquisition methods. RESULTS: The quantifications of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ using EPI protocols showed increased test-retest reliability with higher EPI factors up to 5 as performed in the experiment and were consistent with those based on GRE. CONCLUSION: The result suggests that multishot multi-echo 3D EPI can be a useful alternative acquisition method for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI and quantification of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and χ with reduced scan time, improved test-retest reliability, and similar accuracy compared with commonly used 3D GRE.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imagem Ecoplanar/métodos , Reprodutibilidade dos Testes , Voluntários Saudáveis
14.
Magn Reson Med ; 91(6): 2417-2430, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38291598

RESUMO

PURPOSE: Recent work has shown MRI is able to measure and quantify signals of phospholipid membrane-bound protons associated with myelin in the human brain. This work seeks to develop an improved technique for characterizing this brain ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component in vivo accounting for T 1 $$ {\mathrm{T}}_1 $$ weighting. METHODS: Data from ultrashort echo time scans from 16 healthy volunteers with variable flip angles (VFA) were collected and fitted into an advanced regression model to quantify signal fraction, relaxation time, and frequency shift of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component. RESULTS: The fitted components show intra-subject differences of different white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ signal fraction in the corticospinal tracts measured at 0.09 versus 0.06 in other white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ frequency shift in the body of the corpus callosum at - $$ - $$ 1.5 versus - $$ - $$ 2.0 ppm in other white matter structures. CONCLUSION: The significantly different measured components and measured T 1 $$ {\mathrm{T}}_1 $$ relaxation time of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component suggest that this method is picking up novel signals from phospholipid membrane-bound protons.


Assuntos
Encéfalo , Prótons , Humanos , Voluntários Saudáveis , Imagens de Fantasmas , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Fosfolipídeos
15.
Magn Reson Med ; 92(3): 1149-1161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38650444

RESUMO

PURPOSE: To improve image quality, mitigate quantification biases and variations for free-breathing liver proton density fat fraction (PDFF) and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification accelerated by radial k-space undersampling. METHODS: A free-breathing multi-echo stack-of-radial MRI method was developed with compressed sensing with multidimensional regularization. It was validated in motion phantoms with reference acquisitions without motion and in 11 subjects (6 patients with nonalcoholic fatty liver disease) with reference breath-hold Cartesian acquisitions. Images, PDFF, and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed using different radial view k-space sampling factors and reconstruction settings. Results were compared with reference-standard results using Bland-Altman analysis. Using linear mixed-effects model fitting (p < 0.05 considered significant), mean and SD were evaluated for biases and variations of PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , respectively, and coefficient of variation on the first echo image was evaluated as a surrogate for image quality. RESULTS: Using the empirically determined optimal sampling factor of 0.25 in the accelerated in vivo protocols, mean differences and limits of agreement for the proposed method were [-0.5; -33.6, 32.7] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-1.0%; -5.8%, 3.8%] for PDFF, close to those of a previous self-gating method using fully sampled radial views: [-0.1; -27.1, 27.0] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-0.4%; -4.5%, 3.7%] for PDFF. The proposed method had significantly lower coefficient of variation than other methods (p < 0.001). Effective acquisition time of 64 s or 59 s was achieved, compared with 171 s or 153 s for two baseline protocols with different radial views corresponding to sampling factor of 1.0. CONCLUSION: This proposed method may allow accelerated free-breathing liver PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping with reduced biases and variations.


Assuntos
Processamento de Imagem Assistida por Computador , Fígado , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Feminino , Masculino , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Respiração , Algoritmos , Adulto , Reprodutibilidade dos Testes , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Movimento (Física) , Tecido Adiposo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Idoso
16.
Magn Reson Med ; 92(6): 2328-2342, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38987985

RESUMO

PURPOSE: The transverse relaxation time T 2 $$ {}_2 $$ holds significant relevance in clinical applications and research studies. Conventional T 2 $$ {}_2 $$ mapping approaches rely on spin-echo sequences, which require lengthy acquisition times and involve high radiofrequency (RF) power deposition. An alternative gradient echo (GRE) phase-based T 2 $$ {}_2 $$ mapping method, utilizing steady-state acquisitions at one small RF spoil phase increment, was recently demonstrated. Here, a modified magnitude- and phase-based T 2 $$ {}_2 $$ mapping approach is proposed, which improves T 2 $$ {\mathrm{T}}_2 $$ estimations by simultaneous fitting of T 1 $$ {\mathrm{T}}_1 $$ and signal amplitude ( A ∝ P D $$ A\propto PD $$ ) at three or more RF spoiling phase increments, instead of assuming a fixed T 1 $$ {\mathrm{T}}_1 $$ value. METHODS: The feasibility of the magnitude-phase-based method was assessed by simulations, in phantom and in vivo experiments using skipped-CAIPI three-dimensional-echo-planar imaging (3D-EPI) for rapid GRE imaging. T 2 $$ {\mathrm{T}}_2 $$ , T 1 $$ {\mathrm{T}}_1 $$ and PD estimations obtained by our method were compared to T 2 $$ {\mathrm{T}}_2 $$ of the phase-based method and T 1 $$ {\mathrm{T}}_1 $$ and PD of spoiled GRE-based multi-parameter mapping using a multi-echo version of the same sequence. RESULTS: The agreement of the proposed T 2 $$ {\mathrm{T}}_2 $$ with ground truth and reference T 2 $$ {\mathrm{T}}_2 $$ values was higher than that of phase-based T 2 $$ {\mathrm{T}}_2 $$ in simulations and in phantom data. While phase-based T 2 $$ {\mathrm{T}}_2 $$ overestimation increases with actual T 2 $$ {\mathrm{T}}_2 $$ and T 1 $$ {\mathrm{T}}_1 $$ , the proposed method is accurate over a large range of physiologically meaningful T 2 $$ {\mathrm{T}}_2 $$ and T 1 $$ {\mathrm{T}}_1 $$ values. At the same time, precision is improved. In vivo results were in line with these observations. CONCLUSION: Accurate magnitude-phase-based T 2 $$ {}_2 $$ mapping is feasible in less than 5 min scan time for 1 mm nominal isotropic whole-head coverage at 3T and 7T.


Assuntos
Algoritmos , Encéfalo , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Humanos , Imageamento por Ressonância Magnética/economia , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
17.
Magn Reson Med ; 92(6): 2294-2311, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38988040

RESUMO

PURPOSE: To explore the high signal-to-noise ratio (SNR) efficiency of interleaved multishot 3D-EPI with standard image reconstruction for fast and robust high-resolution whole-brain quantitative susceptibility (QSM) and R 2 ∗ $$ {R}_2^{\ast } $$ mapping at 7 and 3T. METHODS: Single- and multi-TE segmented 3D-EPI is combined with conventional CAIPIRINHA undersampling for up to 72-fold effective gradient echo (GRE) imaging acceleration. Across multiple averages, scan parameters are varied (e.g., dual-polarity frequency-encoding) to additionally correct for B 0 $$ {\mathrm{B}}_0 $$ -induced artifacts, geometric distortions and motion retrospectively. A comparison to established GRE protocols is made. Resolutions range from 1.4 mm isotropic (1 multi-TE average in 36 s) up to 0.4 mm isotropic (2 single-TE averages in approximately 6 min) with whole-head coverage. RESULTS: Only 1-4 averages are needed for sufficient SNR with 3D-EPI, depending on resolution and field strength. Fast scanning and small voxels together with retrospective corrections result in substantially reduced image artifacts, which improves susceptibility and R 2 ∗ $$ {R}_2^{\ast } $$ mapping. Additionally, much finer details are obtained in susceptibility-weighted image projections through significantly reduced partial voluming. CONCLUSION: Using interleaved multishot 3D-EPI, single-TE and multi-TE data can readily be acquired 10 times faster than with conventional, accelerated GRE imaging. Even 0.4 mm isotropic whole-head QSM within 6 min becomes feasible at 7T. At 3T, motion-robust 0.8 mm isotropic whole-brain QSM and R 2 ∗ $$ {R}_2^{\ast } $$ mapping with no apparent distortion in less than 7 min becomes clinically feasible. Stronger gradient systems may allow for even higher effective acceleration rates through larger EPI factors while maintaining optimal contrast.


Assuntos
Algoritmos , Artefatos , Encéfalo , Imagem Ecoplanar , Imageamento Tridimensional , Razão Sinal-Ruído , Humanos , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Masculino , Mapeamento Encefálico/métodos , Adulto , Feminino
18.
Magn Reson Med ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250435

RESUMO

PURPOSE: To develop a 3D spherical EPTI (sEPTI) acquisition and a comprehensive reconstruction pipeline for rapid high-quality whole-brain submillimeter T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification. METHODS: For the sEPTI acquisition, spherical k-space coverage is utilized with variable echo-spacing and maximum kx ramp-sampling to improve efficiency and signal incoherency compared to existing EPTI approaches. For reconstruction, an iterative rank-shrinking B0 estimation and odd-even high-order phase correction algorithms were incorporated into the reconstruction to better mitigate artifacts from field imperfections. A physics-informed unrolled network was utilized to boost the SNR, where 1-mm and 0.75-mm isotropic whole-brain imaging were performed in 45 and 90 s at 3 T, respectively. These protocols were validated through simulations, phantom, and in vivo experiments. Ten healthy subjects were recruited to provide sufficient data for the unrolled network. The entire pipeline was validated on additional five healthy subjects where different EPTI sampling approaches were compared. Two additional pediatric patients with epilepsy were recruited to demonstrate the generalizability of the unrolled reconstruction. RESULTS: sEPTI achieved 1.4 × $$ \times $$ faster imaging with improved image quality and quantitative map precision compared to existing EPTI approaches. The B0 update and the phase correction provide improved reconstruction performance with lower artifacts. The unrolled network boosted the SNR, achieving high-quality T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification with single average data. High-quality reconstruction was also obtained in the pediatric patients using this network. CONCLUSION: sEPTI achieved whole-brain distortion-free multi-echo imaging and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification at 0.75 mm in 90 s which has the potential to be useful for wide clinical applications.

19.
Magn Reson Med ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155406

RESUMO

PURPOSE: To develop a Dixon-based B 0 $$ {\mathrm{B}}_0 $$ self-navigation approach to estimate and correct temporal B 0 $$ {\mathrm{B}}_0 $$ variations in radial stack-of-stars gradient echo imaging for quantitative body MRI. METHODS: The proposed method estimates temporal B 0 $$ {\mathrm{B}}_0 $$ variations using a B 0 $$ {\mathrm{B}}_0 $$ self-navigator estimated by a graph-cut-based water-fat separation algorithm on the oversampled k-space center. The B 0 $$ {\mathrm{B}}_0 $$ self-navigator was employed to correct for phase differences between radial spokes (one-dimensional [1D] correction) and to perform a motion-resolved reconstruction to correct spatiotemporal pseudo-periodic B 0 $$ {\mathrm{B}}_0 $$ variations (three-dimensional [3D] correction). Numerical simulations, phantom experiments and in vivo neck scans were performed to evaluate the effects of temporal B 0 $$ {\mathrm{B}}_0 $$ variations on the field-map, proton density fat fraction (PDFF) and T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ map, and to validate the proposed method. RESULTS: Temporal B 0 $$ {\mathrm{B}}_0 $$ variations were found to cause signal loss and phase shifts on the multi-echo images that lead to an underestimation of T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ , while PDFF mapping was less affected. The B 0 $$ {\mathrm{B}}_0 $$ self-navigator captured slowly varying temporal B 0 $$ {\mathrm{B}}_0 $$ drifts and temporal variations caused by respiratory motion. While the 1D correction effectively corrected B 0 $$ {\mathrm{B}}_0 $$ drifts in phantom studies, it was insufficient in vivo due to 3D spatially varying temporal B 0 $$ {\mathrm{B}}_0 $$ variations with amplitudes of up to 25 Hz at 3 T near the lungs. The proposed 3D correction locally improved the correction of field-map and T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ and reduced image artifacts. CONCLUSION: Temporal B 0 $$ {\mathrm{B}}_0 $$ variations particularly affect T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping in radial stack-of-stars imaging. The self-navigation approach can be applied without modifying the MR acquisition to correct for B 0 $$ {\mathrm{B}}_0 $$ drift and physiological motion-induced B 0 $$ {\mathrm{B}}_0 $$ variations, especially in the presence of fat.

20.
Magn Reson Med ; 91(5): 2188-2199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38116692

RESUMO

PURPOSE: The purpose of this work was to design and build a coil for quadri-nuclear MRI of the human brain at 7 T. METHODS: We built a transmit/receive triple-tuned (45.6 MHz for 2 $$ {}^2 $$ H, 78.6 MHz for 23 $$ {}^{23} $$ Na, and 120.3 MHz for 31 $$ {}^{31} $$ P) quadrature four-rod birdcage that was geometrically interleaved with a transmit/receive four-channel dipole array (297.2 MHz for 1 $$ {}^1 $$ H). The birdcage rods contained passive, two-pole resonant circuits that emulated capacitors required for single-tuning at three frequencies. The birdcage assembly also included triple-tuned matching networks, baluns, and transmit/receive switches. We assessed the performance of the coil with quality factor (Q) and signal-to-noise ratio (SNR) measurements, and performed in vivo multinuclear MRI and MR spectroscopic imaging (MRSI). RESULTS: Q measurements showed that the triple-tuned birdcage efficiency was within 33% of that of single-tuned baseline birdcages at all three frequencies. The quadri-tuned coil SNR was 78%, 59%, 44%, and 48% lower than that of single or dual-tuned reference coils for 1 $$ {}^1 $$ H, 2 $$ {}^2 $$ H, 23 $$ {}^{23} $$ Na, and 31 $$ {}^{31} $$ P, respectively. Quadri-nuclear MRI and MRSI was demonstrated in brain in vivo in about 30 min. CONCLUSION: While the SNR of the quadruple tuned coil was significantly lower than dual- and single-tuned reference coils, it represents a step toward truly simultaneous quadri-nuclear measurements.


Assuntos
Imageamento por Ressonância Magnética , Pirimidinas , Sódio , Estrobilurinas , Humanos , Imagens de Fantasmas , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA