Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.644
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347253

RESUMO

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Assuntos
Ergotioneína , Humanos , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxirredução , Compostos de Sulfidrila , Peso Molecular
2.
Annu Rev Biochem ; 83: 291-315, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905784

RESUMO

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sítio Alostérico , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Exossomos , Proteína HMGN2/química , Proteínas de Choque Térmico/química , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Nucleossomos/química , Canais de Potássio/química , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Proteínas/química
3.
Proc Natl Acad Sci U S A ; 121(14): e2315586121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498726

RESUMO

Heparins have been invaluable therapeutic anticoagulant polysaccharides for over a century, whether used as unfractionated heparin or as low molecular weight heparin (LMWH) derivatives. However, heparin production by extraction from animal tissues presents multiple challenges, including the risk of adulteration, contamination, prion and viral impurities, limited supply, insecure supply chain, and significant batch-to-batch variability. The use of animal-derived heparin also raises ethical and religious concerns, as well as carries the risk of transmitting zoonotic diseases. Chemoenzymatic synthesis of animal-free heparin products would offer several advantages, including reliable and scalable production processes, improved purity and consistency, and the ability to produce heparin polysaccharides with molecular weight, structural, and functional properties equivalent to those of the United States Pharmacopeia (USP) heparin, currently only sourced from porcine intestinal mucosa. We report a scalable process for the production of bioengineered heparin that is biologically and compositionally similar to USP heparin. This process relies on enzymes from the heparin biosynthetic pathway, immobilized on an inert support and requires a tailored N-sulfoheparosan with N-sulfo levels similar to those of porcine heparins. We also report the conversion of our bioengineered heparin into a LMWH that is biologically and compositionally similar to USP enoxaparin. Ultimately, we demonstrate major advances to a process to provide a potential clinical and sustainable alternative to porcine-derived heparin products.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Animais , Suínos , Heparina/metabolismo , Heparina de Baixo Peso Molecular/química , Anticoagulantes/química , Peso Molecular , Contaminação de Medicamentos
4.
Immunol Rev ; 313(1): 339-357, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217774

RESUMO

Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Via Alternativa do Complemento , Humanos , Peso Molecular , Proteínas do Sistema Complemento/metabolismo , Ativação do Complemento , Fator D do Complemento/metabolismo , Síndrome Hemolítico-Urêmica Atípica/metabolismo
5.
J Biol Chem ; 300(8): 107493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925330

RESUMO

Diabetic nephropathy (DN) is one of the most important comorbidities for diabetic patients, which is the main factor leading to end-stage renal disease. Heparin analogs can delay the progression of DN, but the mechanism is not fully understood. In this study, we found that low molecular weight heparin therapy significantly upregulated some downstream proteins of the peroxisome proliferator-activated receptor (PPAR) signaling pathway by label-free quantification of the mouse kidney proteome. Through cell model verification, low molecular weight heparin can protect the heparan sulfate of renal tubular epithelial cells from being degraded by heparanase that is highly expressed in a high-glucose environment, enhance the endocytic recruitment of fatty acid-binding protein 1, a coactivator of the PPAR pathway, and then regulate the activation level of intracellular PPAR. In addition, we have elucidated for the first time the molecular mechanism of heparan sulfate and fatty acid-binding protein 1 interaction. These findings provide new insights into understanding the role of heparin in the pathogenesis of DN and developing corresponding treatments.


Assuntos
Nefropatias Diabéticas , Glicocálix , Heparina de Baixo Peso Molecular , Heparitina Sulfato , Transdução de Sinais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Animais , Camundongos , Heparina de Baixo Peso Molecular/farmacologia , Heparitina Sulfato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/efeitos dos fármacos , Glucuronidase/metabolismo , Glucuronidase/genética , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Progressão da Doença
6.
EMBO J ; 40(20): e106765, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34510494

RESUMO

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


Assuntos
COVID-19/transmissão , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina de Baixo Peso Molecular/farmacologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Chlorocebus aethiops , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Mucosa/citologia , Mucosa/virologia , SARS-CoV-2/metabolismo , Sindecana-1/metabolismo , Sindecana-4/metabolismo , Células Vero , Tratamento Farmacológico da COVID-19
7.
RNA ; 30(1): 26-36, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879863

RESUMO

Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.


Assuntos
MicroRNAs , Complexo de Inativação Induzido por RNA , Animais , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peso Molecular , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197296

RESUMO

Issues of molecular weight determination have been central to the development of supramolecular polymer chemistry. Whereas relationships between concentration and optical features are established for well-behaved absorptive and emissive species, for most supramolecular polymeric systems no simple correlation exists between optical performance and number-average molecular weight (Mn). As such, the Mn of supramolecular polymers have to be inferred from various measurements. Herein, we report an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n that exhibits monotonic changes in the fluorescence color as a function of Mn Based on theoretical estimates, the calculated average degree of polymerization (DPcal) increases from 16.9 to 84.5 as the monomer concentration increases from 0.08 mM to 2.00 mM. Meanwhile, the fluorescent colors of M1 + Zn(OTf)2 solutions were found to pass from green to yellow and to orange, corresponding to a red shift in the maximum emission band (λmax ). Therefore, a relationship between DPcal and λmax could be established. Additionally, the anion-responsive nature of the present system meant that the extent of supramolecular polymerization could be regulated by introducing anions, with the resulting change in Mn being readily monitored via changes in the fluorescent emission features.

9.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737836

RESUMO

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Assuntos
Proteínas de Escherichia coli , Fosfoproteínas Fosfatases , Proteínas Tirosina Quinases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo
10.
J Proteome Res ; 23(1): 368-376, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006349

RESUMO

The low-molecular-weight proteins (LMWP) in serum and plasma are related to various human diseases and can be valuable biomarkers. A small open reading frame-encoded peptide (SEP) is one kind of LMWP, which has been found to function in many bioprocesses and has also been found in human blood, making it a potential biomarker. The detection of LMWP by a mass spectrometry (MS)-based proteomic assay is often inhibited by the wide dynamic range of serum/plasma protein abundance. Nanoparticle protein coronas are a newly emerging protein enrichment method. To analyze SEPs in human serum, we have developed a protocol integrated with nanoparticle protein coronas and liquid chromatography (LC)/MS/MS. With three nanoparticles, TiO2, Fe3O4@SiO2, and Fe3O4@SiO2@TiO2, we identified 164 new SEPs in the human serum sample. Fe3O4@SiO2 and a nanoparticle mixture obtained the maximum number and the largest proportion of identified SEPs, respectively. Compared with acetonitrile-based extraction, nanoparticle protein coronas can cover more small proteins and SEPs. The magnetic nanoparticle is also fit for high-throughput parallel protein separation before LC/MS. This method is fast, efficient, reproducible, and easy to operate in 96-well plates and centrifuge tubes, which will benefit the research on SEPs and biomarkers.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Fases de Leitura Aberta , Dióxido de Silício , Peptídeos/análise , Proteínas Sanguíneas/química , Biomarcadores
11.
Kidney Int ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084257

RESUMO

IgA nephropathy (IgAN) is the most common type of glomerulonephritis that frequently progresses to kidney failure. However, the molecular pathogenesis underlying IgAN remains largely unknown. Here, we investigated the role of galectin-3 (Gal-3), a galactoside-binding protein in IgAN pathogenesis, and showed that Gal-3 expression by the kidney was significantly enhanced in patients with IgAN. In both TEPC-15 hybridoma-derived IgA-induced, passive, and spontaneous "grouped" ddY IgAN models, Gal-3 expression was clearly increased with disease severity in the glomeruli, peri-glomerular regions, and some kidney tubules. Gal-3 knockout (KO) in the passive IgAN model had significantly improved proteinuria, kidney function and reduced severity of kidney pathology, including neutrophil infiltration and decreased differentiation of Th17 cells from kidney-draining lymph nodes, despite increased percentages of regulatory T cells. Gal-3 KO also inhibited the NLRP3 inflammasome, yet it enhanced autophagy and improved kidney inflammation and fibrosis. Moreover, administration of 6-de-O-sulfated, N-acetylated low-molecular-weight heparin, a competitive Gal-3 binding inhibitor, restored kidney function and improved kidney lesions in passive IgAN mice. Thus, our results suggest that Gal-3 is critically involved in IgAN pathogenesis by activating the NLRP3 inflammasome and promoting Th17 cell differentiation. Hence, targeting Gal-3 action may represent a new therapeutic strategy for treatment of this kidney disease.

12.
Cancer ; 130(9): 1577-1589, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38288941

RESUMO

Management of venous thromboembolism (VTE) in patients with primary and metastatic brain tumors (BT) is challenging because of the risk of intracranial hemorrhage (ICH). There are no prospective clinical trials evaluating safety and efficacy of direct oral anticoagulants (DOACs), specifically in patients with BT, but they are widely used for VTE in this population. A group of neuro-oncology experts convened to provide practical clinical guidance for the off-label use of DOACs in treating VTE in patients with BT. We searched PubMed for the following terms: BTs, glioma, glioblastoma (GBM), brain metastasis, VTE, heparin, low-molecular-weight heparin (LWMH), DOACs, and ICH. Although prospective clinical trials are needed, the recommendations presented aim to assist clinicians in making informed decisions regarding DOACs for VTE in patients with BT.


Assuntos
Neoplasias Encefálicas , Neoplasias , Tromboembolia Venosa , Humanos , Anticoagulantes/efeitos adversos , Tromboembolia Venosa/epidemiologia , Hemorragia , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/tratamento farmacológico , Administração Oral
13.
Biochem Biophys Res Commun ; 736: 150519, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128266

RESUMO

Heat stress due to global warming adversely affects plant physiology and metabolism, significantly reducing agricultural productivity. Plants have evolved various adaptive mechanisms to cope with such stresses, involving a range of heat stress-responsive proteins. This study investigates the molecular functions and structural changes of OsTDX (Oryza sativa TPR repeat-containing thioredoxin) in rice under heat stress, focusing on its roles as a disulfide reductase and molecular chaperone. OsTDX, sharing a 52 % overall amino acid identity with AtTDX, predominantly forms high molecular weight (HMW) complexes under heat stress conditions. Functional assays revealed that OsTDX exhibited increased disulfide reductase activity in a dose-dependent manner and significantly enhanced holdase chaperone activity, particularly under specific heat stress conditions (60 °C). The structural shift from low molecular weight (LMW) to HMW forms was accompanied by increased hydrophobicity, as indicated by bis-ANS fluorescence intensity measurements. In conclusion, OsTDX exhibits dual functions as a disulfide reductase and a holdase chaperone, with its chaperone activity significantly enhanced under heat stress through structural changes to HMW complexes. These findings contribute to understand the molecular mechanisms of heat tolerance in rice and highlight the potential role of OsTDX in the development of heat-tolerant crops to address crop yield declines due to global warming.

14.
BMC Plant Biol ; 24(1): 395, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745139

RESUMO

BACKGROUND: In common wheat (Triticum aestivum L.), allelic variations in the high-molecular-weight glutenin subunits Glu-B1 locus have important effects on grain end-use quality. The Glu-B1 locus consists of two tightly linked genes encoding x- and y-type subunits that exhibit highly variable frequencies. However, studies on the discriminating markers of the alleles that have been reported are limited. Here, we developed 11 agarose gel-based PCR markers for detecting Glu-1Bx and Glu-1By alleles. RESULTS: By integrating the newly developed markers with previously published PCR markers, nine Glu-1Bx locus alleles (Glu-1Bx6, Glu-1Bx7, Glu-1Bx7*, Glu-1Bx7 OE, Glu-1Bx13, Glu-1Bx14 (-) , Glu-1Bx14 (+)/Bx20, and Glu-1Bx17) and seven Glu-1By locus alleles (Glu-1By8, Glu-1By8*, Glu-1By9, Glu-1By15/By20, Glu-1By16, and Glu-1By18) were distinguished in 25 wheat cultivars. Glu-1Bx6, Glu-1Bx13, Glu-1Bx14 (+)/Bx20, Glu-1By16, and Glu-1By18 were distinguished using the newly developed PCR markers. Additionally, the Glu-1Bx13 and Glu-1Bx14 (+)/Bx20 were distinguished by insertions and deletions in their promoter regions. The Glu-1Bx6, Glu-1Bx7, Glu-1By9, Glu-1Bx14 (-), and Glu-1By15/By20 alleles were distinguished by using insertions and deletions in the gene-coding region. Glu-1By13, Glu-1By16, and Glu-1By18 were dominantly identified in the gene-coding region. We also developed a marker to distinguish between the two Glu-1Bx14 alleles. However, the Glu-1Bx14 (+) + Glu-1By15 and Glu-1Bx20 + Glu-1By20 allele combinations could not be distinguished using PCR markers. The high-molecular-weight glutenin subunits of wheat varieties were analyzed by ultra-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the findings were compared with the results of PCR analysis. CONCLUSIONS: Seven Glu-1Bx and four Glu-1By allele detection markers were developed to detect nine Glu-1Bx and seven Glu-1By locus alleles, respectively. Integrating previously reported markers and 11 newly developed PCR markers improves allelic identification of the Glu-B1 locus and facilitates more effective analysis of Glu-B1 alleles molecular variations, which may improve the end-use quality of wheat.


Assuntos
Alelos , Glutens , Reação em Cadeia da Polimerase , Triticum , Glutens/genética , Glutens/metabolismo , Triticum/genética , Marcadores Genéticos , Reação em Cadeia da Polimerase/métodos , Peso Molecular
15.
BMC Med ; 22(1): 171, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649992

RESUMO

BACKGROUND: Little is known about the safety and efficacy of discontinuing antiplatelet therapy via LMWH bridging therapy in elderly patients with coronary stents implanted for > 12 months undergoing non-cardiac surgery. This randomized trial was designed to compare the clinical benefits and risks of antiplatelet drug discontinuation via LMWH bridging therapy. METHODS: Patients were randomized 1:1 to receive subcutaneous injections of either dalteparin sodium or placebo. The primary efficacy endpoint was cardiac or cerebrovascular events. The primary safety endpoint was major bleeding. RESULTS: Among 2476 randomized patients, the variables (sex, age, body mass index, comorbidities, medications, and procedural characteristics) and percutaneous coronary intervention information were not significantly different between the bridging and non-bridging groups. During the follow-up period, the rate of the combined endpoint in the bridging group was significantly lower than in the non-bridging group (5.79% vs. 8.42%, p = 0.012). The incidence of myocardial injury in the bridging group was significantly lower than in the non-bridging group (3.14% vs. 5.19%, p = 0.011). Deep vein thrombosis occurred more frequently in the non-bridging group (1.21% vs. 0.4%, p = 0.024), and there was a trend toward a higher rate of pulmonary embolism (0.32% vs. 0.08%, p = 0.177). There was no significant difference between the groups in the rates of acute myocardial infarction (0.81% vs. 1.38%), cardiac death (0.24% vs. 0.41%), stroke (0.16% vs. 0.24%), or major bleeding (1.22% vs. 1.45%). Multivariable analysis showed that LMWH bridging, creatinine clearance < 30 mL/min, preoperative hemoglobin < 10 g/dL, and diabetes mellitus were independent predictors of ischemic events. LMWH bridging and a preoperative platelet count of < 70 × 109/L were independent predictors of minor bleeding events. CONCLUSIONS: This study showed the safety and efficacy of perioperative LMWH bridging therapy in elderly patients with coronary stents implanted > 12 months undergoing non-cardiac surgery. An alternative approach might be the use of bridging therapy with half-dose LMWH. TRIAL REGISTRATION: ISRCTN65203415.


Assuntos
Stents , Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/efeitos adversos , Heparina de Baixo Peso Molecular/administração & dosagem , Heparina de Baixo Peso Molecular/uso terapêutico , Heparina de Baixo Peso Molecular/efeitos adversos , Dalteparina/administração & dosagem , Dalteparina/uso terapêutico , Dalteparina/efeitos adversos , Resultado do Tratamento , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Hemorragia/induzido quimicamente , Placebos/administração & dosagem , Assistência Perioperatória/métodos
16.
Small ; 20(26): e2311735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279561

RESUMO

Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.

17.
Small ; 20(25): e2310839, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225689

RESUMO

Adhesive materials have played an essential role in the history of humanity. Natural adhesives composed of low-molecular-weight monomers have been overshadowed by modern petroleum-based glues. With the development of green economy, the demand for eco-friendly materials has increased. Herein, two natural biocompatible compounds, namely thioctic acid (TA) and malic acid (MA), are selected to prepare a high-performance pressure-sensitive adhesive poly[TA-MA]. This adhesive can be quantitatively obtained via a simple mixing and heating process. Poly[TA-MA] shows interesting and useful properties, including reversible flexibility, high elongation, and good self-healing, owing to its dynamic polymerization pattern and reversible cross-linking behavior. Poly[TA-MA] exhibits excellent adhesion performance under various extreme conditions, such as at low temperatures and in hot water. High values of shear strength (3.86 MPa), peel strength (7.90 N cm-1), loop tack (10.60 N cm-1), tensile strength (1.02 MPa), and shear resistance (1628 h) demonstrate the strong adhesive effect of poly[TA-MA]. Additionally, TA can be regenerated in the monomer forms from poly[TA-MA] with high recovery rate (>90%). Meanwhile, strong anti-bacterial behavior of poly[TA-MA] is recorded. This study not only reported a new pressure-sensitive adhesive but also fully displayed the feasibility of using natural small molecules to achieve robust surface adhesion.

18.
Small ; 20(35): e2400827, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38660701

RESUMO

The first example of a material capable of spatiotemporal catch and release of singlet oxygen (1O2) in gel phase is presented. Several low molecular weight organogelators based around an oxotriphenylhexanoate (OTHO) core are developed and optimized with regard to; their gelation properties, and ability of releasing 1O2 upon thermal and/or photochemical external stimuli, in both gel phase and solution. Remarkably, reversible phase transitioning between the gel and solution phase are also demonstrated. Taken together two complementary modes of releasing 1O2, one thermally controlled over time, and one rapid release by means of photochemical stimuli is disclosed. These findings represent the first phase reversible system where function and aggregation properties can be controlled independently, and thus pave the way for novel applications in material sciences as well as in life sciences.

19.
Small ; 20(6): e2306387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771189

RESUMO

4D printing recently emerges as an exciting evolution of conventional 3D printing, where a printed construct can quickly transform in response to a specific stimulus to switch between a temporary variable state and an original state. In this work, a photocrosslinkable polyethylene-glycol polyurethane ink is synthesized for light-assisted 4D printing of smart materials. The molecular weight distribution of the ink monomers is tunable by adjusting the copolymerization reaction time. Digital light processing (DLP) technique is used to program a differential swelling response in the printed constructs after humidity variation. Bioactive microparticles are embedded into the ink and the improvement of biocompatibility of the printed constructs is demonstrated for tissue engineering applications. Cell studies reveal above 90% viability in 1 week and ≈50% biodegradability after 4 weeks. Self-folding capillary scaffolds, dynamic grippers, and film actuators are made and activated in a humid environment. The approach offers a versatile platform for the fabrication of complex constructs. The ink can be used in tissue engineering and actuator applications, making the ink a promising avenue for future research.


Assuntos
Tinta , Alicerces Teciduais , Poliuretanos , Engenharia Tecidual/métodos , Hidrogéis , Impressão Tridimensional
20.
BMC Microbiol ; 24(1): 259, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997685

RESUMO

BACKGROUND: Bacterial genomes often encode structures similar to phage capsids (encapsulins) and phage tails which can be induced spontaneously or using genotoxic compounds such as mitomycin C. These high molecular-weight (HMW) putative antibacterial proteins (ABPs) are used against the competitive strains under natural environment. Previously, it was unknown whether these HMW putative ABPs originating from the insect pathogenic Gram-positive, spore-forming bacterium Brevibacillus laterosporus (Bl) isolates (1821L, 1951) are spontaneously induced during the growth and pose a detrimental effect on their own survival. Furthermore, no prior work has been undertaken to determine their biochemical characteristics. RESULTS: Using a soft agar overlay method with polyethylene glycol precipitation, a narrow spectrum of bioactivity was found from the precipitated lysate of Bl 1951. Electron micrographs of mitomycin C- induced filtrates showed structures similar to phage capsids and contractile tails. Bioactivity assays of cell free supernatants (CFS) extracted during the growth of Bl 1821L and Bl 1951 suggested spontaneous induction of these HMW putative ABPs with an autocidal activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of spontaneously induced putative ABPs showed appearance of ~ 30 kDa and ~ 48 kDa bands of varying intensity across all the time intervals during the bacterial growth except in the initial hours. Statistically, spontaneously induced HMW putative ABPs of Bl 1951 exhibited a significant decrease in the number of viable cells of its producer strain after 18 h of growth in liquid. In addition, a significant change in pH and prominent bioactivity of the CFS of this particular time period was noted. Biochemically, the filtered supernatant derived from either Bl 1821L or Bl 1951 maintained bioactivity over a wide range of pH and temperature. CONCLUSION: This study reports the spontaneous induction of HMW putative ABPs (bacteriocins) of Bl 1821L and Bl 1951 isolates during the course of growth with potential autocidal activity which is critically important during production as a potential biopesticide. A narrow spectrum of putative antibacterial activity of Bl 1951 precipitate was found. The stability of HMW putative ABPs of Bl 1821L and Bl 1951 over a wide range of pH and temperature can be useful in expanding the potential of this useful bacterium beyond the insecticidal value.


Assuntos
Antibacterianos , Proteínas de Bactérias , Brevibacillus , Peso Molecular , Brevibacillus/metabolismo , Brevibacillus/genética , Brevibacillus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mitomicina/farmacologia , Cinética , Insetos/microbiologia , Concentração de Íons de Hidrogênio , Eletroforese em Gel de Poliacrilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA