Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2310736, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282175

RESUMO

2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm-3, stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g-1 at 104 C, and high areal capacity of 7.94 mAh cm-2 (loading: 24.2 mg cm-2) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.

2.
Environ Res ; 249: 118426, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342202

RESUMO

The advancement and engineering of novel crystalline materials is facilitated through the utilization of innovative porous crystalline structures, established via KOH-treated monolithic graphene oxide frameworks. These materials exhibit remarkable and versatile characteristics for both functional exploration and applications within the realm of CO2 capture. In this comprehensive study, we have synthesized monolithic reduced graphene oxide-based adsorbents through a meticulous self-assembly process involving different mass ratios of GO/malic acid (MaA) (1:0.250, 1:0.500, and 1:1 by weight). Building upon this foundation, we further modified MGO 0.250 through KOH-treatment by chloroacetic acid method, leading to the creation of MGO 0.250_KOH, which was subjected to CO2 capture assessments. The comprehensive investigation encompassed an array of parameters including morphology, specific surface area, crystal defects, functional group identification, and CO2 capture efficiency. Employing a combination of FT-IR, XRD, Raman, BET, SEM, HR-TEM, and XPS techniques, the study revealed profound insights. Particularly notable was the observation that the MGO 0.250_KOH adsorbent exhibited an exceptional CO2 capture performance, leading to a significant enhancement of the CO2 capture capacity from 1.69 mmol g-1 to 2.35 mmol g-1 at standard conditions of 25 °C and 1 bar pressure. This performance enhancement was concomitant with an augmentation in surface area, elevating from 287.93 to 419.75 m2 g-1 (a nearly 1.5-fold increase compared to MGO 1.000 with a surface area of 287.93 m2 g-1). The monolithic adsorbent demonstrated a commendable production yield of 82.92%, along with an impressive regenerability of 98.80% at 100 °C. Additionally, adsorbent's proficiency in CO2 adsorption, rendering it a promising candidate for post-combustion CO2 capture applications. These findings collectively underscore the capacity adsorbents to significantly amplify CO2 capture capabilities. The viability of employing this strategy as an uncomplicated pre-treatment technique in various industrial sectors is a plausible prospect, given the study's outcomes.


Assuntos
Dióxido de Carbono , Grafite , Grafite/química , Dióxido de Carbono/química , Adsorção , Porosidade
3.
Biomed Chromatogr ; 38(9): e5940, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38923002

RESUMO

Poly(butyl methacrylate-co-ethylene dimethacrylate) monolith was in situ prepared in a liquid chromatography capillary column with a 75 µm internal diameter. This monolith offered high permeability (5.3 ± 10-14 m2) and good peak capacity (140 for a 15 cm column length at 300 nl/min with a 20 min gradient time). This is exemplified by its separation ability in reversed mode for subunit analysis of monoclonal antibodies after IdeS digestion (middle-up analysis). The potential of this column was also illustrated for the fast analytical control of therapeutic monoclonal antibodies in standardized infusion bags prepared in advance in a pharmacy department. Linearity analysis revealed the column's capability for accurate quantification analysis of the different dose bandings (in mg) of monoclonal antibodies in <2 min. In addition, lifetime analysis data indicated that the column can be highly reproducible and has a long lifetime with stable and low back pressure. The variations observed on the peak shape and area between unstressed (intact) and stressed monoclonal antibodies indicated that our nano liquid chromatographic method was stability indicating. In addition, using a gradient elution mode, the presence of minor components in the infusion bags was visualized.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Modelos Lineares , Embalagem de Medicamentos/métodos , Nanotecnologia/métodos , Serviço de Farmácia Hospitalar , Metacrilatos/química
4.
Mikrochim Acta ; 191(10): 584, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39245760

RESUMO

Innovative chiral capillary silica monoliths (CSMs) were developed based on DNA nanoflowers (DNFs). Baseline separation of enantiomers such as atenolol, tyrosine, histidine, and nefopam was achieved by using DNF-modified CSMs, and the obtained resolution value was higher than 1.78. To further explore the effect of DNFs on enantioseparation, different types of chiral columns including DNA strand containing the complementary sequence of the template (DCT)-modified CSMs, DNF2-modified CSMs, and DNF3-modified CSMs were prepared as well. It was observed that DNF-modified CSMs displayed better chiral separation ability compared with DCT-based columns. The intra-day and inter-day repeatability of model analytes' retention time and resolution kept desirable relative standard deviation values of less than 8.28%. DNF2/DNF3-modified CSMs were able to achieve baseline separation of atenolol, propranolol, 2'-deoxyadenosine, and nefopam enantiomers. Molecular docking simulations were performed to investigate enantioselectivity mechanisms of DNA sequences for enantiomers. To indicate the successful construction of DNFs and DNF-modified CSMs, various charaterization approaches including scanning electron microscopy, agarose gel electrophoresis, dynamic light scattering analysis, electroosmotic flow, and Fourier-transform infrared spectroscopy were utilized. Moreover, the enantioseparation performance of DNF-modified CSMs was characterized in terms of sample volume, applied voltage, and buffer concentration. This work paves the way to applying DNF-based capillary electrochromatography microsystems for chiral separation.


Assuntos
DNA , Dióxido de Silício , Dióxido de Silício/química , DNA/química , DNA/isolamento & purificação , Estereoisomerismo , Simulação de Acoplamento Molecular , Atenolol/química , Atenolol/isolamento & purificação , Nanoestruturas/química , Propranolol/química , Propranolol/isolamento & purificação
5.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124886

RESUMO

Preferential oxidation of CO (CO-PROX) has tremendous significance in purifying hydrogen for fuel cells to avoid catalyst poisoning by CO molecules. Traditional powder catalysts face numerous challenges, including high pressure drop, aggregation tendency, hotspot formation, poor mass and heat transfer efficiency, and inadequate thermal stability. Accordingly, ceramic monolithic catalysts, known as their excellent thermal stability, high surface area, and superior mass and heat transfer characteristics, are gaining increasing research attention. This review examines recent studies on ceramic monolithic catalysts in CO-PROX, placing emphasis on the regulation of active sites (e.g., precious metals like Pt and Au, and non-precious metals like CuO and CeO2), monolith structures, and coating strategies. In addition, the structure-catalytic performance relationships, as well as the potential and limitations of different ceramic monolithic catalysts in practical application, are discussed. Finally, the challenges of monolithic catalysts and future research prospects in CO-PROX reactions are highlighted.

6.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731550

RESUMO

Materials with monolithic structures, such as epoxy monoliths, are used for a variety of applications, such as for column fillers in gas chromatography and HPLC, for separators in lithium-ion batteries, and for precursor polymers for monolith adhesion. In this study, we investigated the fabrication of epoxy monoliths using 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C) as the tetrafunctional epoxy and 4,4'-methylenebis(cyclohexylamine) (BACM) as the amine curing agent to control pore diameters using polyethylene glycols (PEGs) of differing molecular weights as the porogenic agents. We fabricated an epoxy monolith with micron-order pores and high strength levels, and which is suitable for the precursors of composite materials in cases where smaller PEGs are used. We discussed the effects of the porous structures of monoliths on their physical properties, such as tensile strength, elongation, elastic modulus, and glass transition temperatures. For example, epoxy monoliths prepared in the presence of PEGs exhibited an elastic modulus less than 1 GPa at room temperature and Tg values of 175-187 °C, while the epoxy bulk thermoset produced without any porogenic solvent showed a high elastic modulus as 1.8 GPa, which was maintained at high temperatures, and a high Tg of 223 °C. In addition, the unique adhesion characteristics of epoxy monolith sheets are revealed as a result of the combinations made with commercial epoxy and acrylic adhesives. Epoxy monoliths that are combined with conventional adhesives can function as sheet-type adhesives purposed with avoiding problems when only liquid-type adhesives are used.

7.
Small ; 19(9): e2205501, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538755

RESUMO

The shape and morphology modulations of covalent organic frameworks (COFs) are both difficult, but are of significance to tackle to realize high-performance and practical applications. Here, a two-step method is reported that separates the phase separation and crystallization processes for the shape-controlled synthesis of COFs. The insight into the polymerization-induced phase separation (PIPS) allows for the flexible shaping of COFs into column, rod, film and others, as well as for constructing hierarchically porous structure. The as-synthesized COF monoliths are crack-free, no powder detaching, and show 214 MPa of compressive modulus. The resulting good permeability and mechanical flexibility enable COF films to apply for flow-through adsorption and extraction of pollutants at high flow rates. This work successfully resolves the contradiction between PIPS and crystallization, offering a general approach for scalable production of COFs with desired shapes, sizes, and morphologies.

8.
Electrophoresis ; 44(24): 1989-1999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605320

RESUMO

Separation of PEGylated protein mixtures into individual species is a challenging procedure, and many efforts have been focused on creating novel chromatographic supports for this purpose. In this study, a new monolithic stationary phase with hyperbranched nanostructures was chemically synthesized. For this, monoliths with a support matrix of poly (glycidyl methacrylate-co-ethylene dimethacrylate) and ethylenediamine chemistry were modified with third-generation dendrons with butyl-end groups. The new monolith was analyzed by infrared spectroscopy, confirming the dendron with butyl ligands and exhibited low mass transfer resistance as observed by breakthrough frontal analysis. This support was able to separate mono-PEG ribonuclease A from the PEGylation mixture, indicated by a single band (∼30 kDa) in the electrophoretic analysis. Moreover, the separation of mono-PEGylated positional isomers was probably observed, as the protein with ∼30 kDa was found in two separate peaks. Interestingly, the dendronized monolith allowed the separation of the reaction mixture into individual PEGylated species when using high ammonium sulfate concentrations (2 M). A correlation between the PEGylation degree and the strength of the hydrophobic interactions on the monolith was observed. This chromatographic approach combines the natural branched architecture of dendrons and the higher capabilities of the monoliths enhancing the hydrophobic surface area, and therefore the interaction between the PEGylated proteins and ligands. Thus, the novel support represents a novel platform for the purification of PEGylated from non-PEGylated proteins with biotechnological applications.


Assuntos
Dendrímeros , Proteínas/química , Cromatografia Líquida/métodos , Isomerismo , Polietilenoglicóis/química
9.
Electrophoresis ; 44(24): 1943-1952, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603380

RESUMO

Adeno-associated virus (AAV) vectors are crucial tools for gene therapy applications. As AAVs are administered in vivo, stringent purity requirements must be met, necessitating the development of various downstream processing strategies in accordance with regulatory guidelines. In this context, we focus on the non-affinity serotype-independent recombinant AAV (rAAV) capture step, which involves the use of Convective Interaction Media (CIM) cation-exchange SO3 monoliths. We analyzed differentially pretreated viral samples obtained from the Sf9 cell line and applied these samples to the capture SO3 chromatography step. We conducted screening experiments using CIM SO3 0.05 mL monolithic 96-well plates with buffers of varying pH, sodium chloride concentrations, and the inclusion of poloxamer 188, aiming to select the optimal binding mobile phase. Dynamic binding capacity was defined for different pretreatments and the optimal conditions were subsequently retested using the industrial purification CIMmultus line. The results demonstrated a high overall vector recovery (51%) and a significant reduction in impurities (99.98% for protein reduction and 99.25% for DNA reduction) using the selected capture step parameters, thereby confirming the successful optimization of the rAAV capture step in the downstream process using monoliths.


Assuntos
DNA , Cloreto de Sódio , Cromatografia por Troca Iônica/métodos , Linhagem Celular
10.
Electrophoresis ; 44(24): 1923-1933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37400365

RESUMO

The use of viral vectors for vaccine, gene therapy, and oncolytic virotherapy applications has received increased attention in recent years. Large-scale purification of viral vector-based biotherapeutics still presents a significant technical challenge. Chromatography is the primary tool for the purification of biomolecules in the biotechnology industry; however, the majority of chromatography resins currently available have been designed for the purification of proteins. In contrast, convective interaction media monoliths are chromatographic supports that have been designed and successfully utilized for the purification of large biomolecules, including viruses, viruslike particles, and plasmids. We present a case study on the development of a purification method for recombinant Newcastle disease virus directly from clarified cell culture media using strong anion exchange monolith technology (CIMmultus QA, BIA Separations). Resin screening studies showed at least 10 times higher dynamic binding capacity of CIMmultus QA compared to traditional anion exchange chromatography resins. Design of experiments was used to demonstrate a robust operating window for the purification of recombinant virus directly from clarified cell culture without any further pH or conductivity adjustment of the load material. The capture step was successfully scaled up from 1 mL CIMmultus QA columns to the 8 L column scale and achieved a greater than 30-fold reduction in process volume. Compared to the load material, total host cell proteins were reduced by more than 76%, and residual host cell DNA by more than 57% in the elution pool, respectively. Direct loading of clarified cell culture onto a high-capacity monolith stationary phase makes convective flow chromatography an attractive alternative to centrifugation or TFF-based virus purification procedures.


Assuntos
Vírus Oncolíticos , Vírus , Animais , Cromatografia por Troca Iônica/métodos , Ânions , Técnicas de Cultura de Células
11.
Biotechnol Bioeng ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37040074

RESUMO

Here, we compare the performance of various three-dimensional-printed Monolith Adsorption (PMA) columns designed from a triply periodic minimal surface geometry, the Schoen gyroid. The structures examined had designed hydraulic diameters between 203 and 458 µm and voidages of 40%-60%. We compare column efficiency, porosity, static binding capacity and dynamic binding capacity for various load volumes and flow rates. The results show that all structures allowed efficient passage of yeast cells (>97%) over a wide range of interstitial velocities (191 to 1911 cm/h) while maintaining a low pressure drop (<0.1 MPa). The structure with a voidage of 40% and a hydraulic diameter of 203 µm showed the best performance in all aspects evaluated. Bovine serum albumin (BSA) recoveries for all structures (27%-91% when the loaded volume was 180 mL) were significantly affected by hydraulic diameter, mean channel wall thickness, velocity and voidage. Moreover, biomass addition resulted in a decrease in BSA recovery, which became more obvious at high velocities. However, this did not lead to a dramatic reduction in saturated binding capacity, significant changes in axial dispersion, or blockage of channels and could be compensated for by recirculation of the feed, even at high velocity. PMA thus potentially provides an appealing alternative to Expanded Bed Adsorption, retaining the latter's advantages, while eliminating fluidization issues and minimizing both processing time and buffer consumption.

12.
Environ Res ; 220: 115210, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626947

RESUMO

The current study developed a novel aqua-compatible and naked-eye portable solid-state opto-sensor for selective and sensitive detection of ultra-trace Hg2+ ions. The developed chemosensor was fabricated by the direct impregnation of a chromoionophoric probe composed of 2,3-bis((4-isopropylbenzylidene)amino)maleonitrile (PDPM) onto the surface of structurally tailored porous polymer monolithic framework. The template exhibited a highly porous network with greater surface area, which led to the effective anchoring of probe molecules onto the surface of the polymer template, thus serving as an efficient platform to constitute a regenerative solid-state chemosensor. The sensor rendered a superior color shift from dull white to dijon yellow after complexing with Hg2+. The surface, structural, and morphological aspects of the sensor were evaluated using FE-SEM, HR-TEM, EDAX, SAED, p-XRD, N2 adsorption isotherm, and XPS. Rigorous optimization of the effects of different analytical parameters on the sensing performance of the PDPM sensor material was ensured. The monolithic sensor had an optimum sensing performance at pH 8.0, rapid signal response kinetics of 60s and a broad linear response range of 0.5-150.0 µg/L with a 0.22 µg/L detection limit. Furthermore, the sensor was also tolerant of foreign matrix constituents, thereby enabling it to be highly selective in detecting Hg2+. Sensor recovery was analyzed to be possible via Hg2+ desorption using 0.01 M EDTA without compromising its sensing performance. It had reutilization potential for up to eight regenerative cycles with excellent data reliability (recovery ≥99.4% and RSD ≤1.4%). The practicability of the fabricated sensor was investigated using various water and cigarette samples. Experimental data revealed that the developed chromoionophoric sensor was reusable, eco-friendly, low-cost, and possessed superior sensing capabilities, making it more feasible for on-site analysis of environmental samples. The designed sensor has the potential for further investigations and applications as a sensor kit for facilitating heavy metal detection in remote places.


Assuntos
Mercúrio , Metais Pesados , Água/química , Colorimetria , Reprodutibilidade dos Testes , Mercúrio/análise
13.
J Sep Sci ; 46(18): e2300396, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37582653

RESUMO

Organic-silica hybrid monoliths attracted attention as an alternative to extensively researched organic polymer-based and silica-based counterparts. The development and applications of these materials as extraction and separation media in capillary liquid chromatography and capillary electrochromatography were previously reviewed in several manuscripts. In this review, we will concentrate on work published since mid-2016 focusing on advances in their development using sol-gel chemistry of tetra- and trialkoxysilanes and subsequent surface modification with organic monomers, and "one-pot" strategy incorporating sol-gel chemistry of alkoxysilanes and free-radical polymerization, ring-opening polymerization, or thiol-based click polymerization with organic monomers. Approaches adapted to the preparation of hybrid monoliths made with polyhedral oligomeric silsesquioxanes will be covered as well.

14.
J Sep Sci ; 46(2): e2200638, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36408941

RESUMO

In this study, composite monoliths with porous structures were prepared using quaternized chitosan and diatom earth for protein separation. Quaternized chitosan (N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride) dissolved in water was mixed with diatom earth and crosslinked with glutaraldehyde under low-temperature conditions to form a cryogel. Interconnected porous monoliths were obtained after removing ice crystals from the cryogel. The monoliths adsorbed bovine serum albumin selectively from the solution mixture of bovine serum albumin and bovine ɤ-globulin, and bovine ɤ-globulin was recovered in the flow-through fraction. The adsorption selectivity was enhanced by changing the solution pH from 6.8 to 5.5. The adsorption of bovine serum albumin by the monolith was replicated at least five times following its washing with a buffer containing 400 mM NaCl and subsequent regeneration with a 10 mM acetate buffer. The composited monolith is a promising adsorbent for the removal of acidic proteins, such as serum albumin contamination in neutral proteins, for example, ɤ-globulins, in bioproduction processes.


Assuntos
Quitosana , Diatomáceas , Soroalbumina Bovina/química , Quitosana/química , Criogéis/química , Glutaral/química , Adsorção
15.
J Sep Sci ; 46(18): e2300440, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37528733

RESUMO

Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 µm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.


Assuntos
Cromatografia Líquida , Cromatografia Líquida/métodos
16.
Mikrochim Acta ; 190(4): 151, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952093

RESUMO

The development of molecularly imprinted monolith (MIM) for pipette-tip solid-phase extraction (PT-SPE) for sample pretreatment is challenging . In this work, a wax-based molecularly imprinted monolith (WMIM) was successfully prepared with a hybrid method by integration of the traditional packing SPE column and MIM, including preparation of the salt column inside the pipette, polymerization of wax-based imprinted column (WIC) outside the pipette, and immobilization of WIC inside the pipette tip. To ensure the penetration of samples and solvents during the PT-SPE, micrometer-range interconnected macropores were tailor-made via the salt-template sacrifice method. For the production of high affinity imprinted sites within the WIC, octadecanoic acid was used as functional monomer in the paraffin matrix. In terms of the adsorption property, the synthesized WIC exhibited a specific affinity to cardiovascular drugs, with an imprinting factor (IF) of 4.8 for the target analyte. Moreover, the WMIM-based PT-SPE was coupled with fluorescence spectrophotometry for the target propranolol determination  (the excitation and emission wavelengths were 294 nm and 343 nm, respectively). This analytical method showed high recovery of target detection in different real samples (R > 90%), good sensitivity, and accuracy (R2 = 0.99, LOD = 0.03 ng mL-1). We believe this work could provide a significant contribution  for the fabrication of MIM and promote an emerging trend of developing elution-free materials for sample pretreatment.


Assuntos
Impressão Molecular , Impressão Molecular/métodos , Polímeros , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida/métodos , Solventes
17.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047104

RESUMO

Extracellular vesicles (EVs) have enormous potential for the implementation of liquid biopsy and as effective drug delivery means, but the fulfilment of these expectations requires overcoming at least two bottlenecks relative to their purification, namely the finalization of reliable and affordable protocols for: (i) EV sub-population selective isolation and (ii) the scalability of their production/isolation from complex biological fluids. In this work, we demonstrated that these objectives can be achieved by a conceptually new affinity chromatography platform composed of a macroporous epoxy monolith matrix functionalized with anti-CD63 nanobodies with afflux of samples and buffers regulated through a pump. Such a system successfully captured and released integral EVs from urine samples and showed negligible unspecific binding for circulating proteins. Additionally, size discrimination of eluted EVs was achieved by different elution approaches (competitive versus pH-dependent). The physical characteristics of monolith material and the inexpensive production of recombinant nanobodies make scaling-up the capture unit feasible and affordable. Additionally, the availability of nanobodies for further specific EV biomarkers will allow for the preparation of monolithic affinity filters selective for different EV subclasses.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Anticorpos de Domínio Único , Biomarcadores/metabolismo , Líquidos Corporais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Anticorpos de Domínio Único/metabolismo , Tetraspanina 30
18.
Molecules ; 28(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764439

RESUMO

Herein, we report the preparation of lipase immobilised on single-walled carbon nanotubes (SWCNTs) as an enantioselector for capillary monolithic columns and their application in the chiral separation of racemic pharmaceuticals. The columns were prepared through the encapsulation of functionalised SWCNTs (c-SWCNTs) within an organic monolithic polymer, followed by the immobilisation of lipase over the obtained monolith, over a three-day (L1) and five-day (L2) period. The prepared columns were tested for the enantioselective nano-HPLC separation of 50 racemic drugs. A suitable resolution was achieved for 25 drugs using nano-RP-HPLC conditions for both the L1 and L2 capillaries, while no specific resolution was detected under normal-phase HPLC conditions. The developed c-SWCNT-lipase-based polymeric monolithic capillaries are a promising expansion for separating pharmaceutical enantiomers' using nano-HPLC.


Assuntos
Capilares , Nanotubos de Carbono , Cromatografia Líquida de Alta Pressão , Ácidos Carboxílicos , Lipase , Polímeros , Preparações Farmacêuticas
19.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771088

RESUMO

Coenzyme Q10 (CoQ10) is a vital substance found throughout body. It helps convert food into energy and is eaten small amounts in foods. CoQ10 has gained great interest in recent years as a potential candidate for the treatment of various diseases. The content of CoQ10 in food samples is a crucial quality index for foods. Therefore, the development of sensitive separation and quantification method for determining the amount of CoQ10 in various samples, especially in foods, is an important issue, especially for food nutrition. In this study, a new, miniaturized monolithic column was developed and applied for the determination of CoQ10 in pistachio samples by nano-liquid chromatography (nano-LC). The monolithic column with a 50 µm i.d. was prepared by in situ polymerization using laurylmethacrylate (LMA) as the main monomer and ethylene dimethacrylate (EDMA) as the crosslinker. Methanol (MeOH) and polyethyleneglycol (PEG) were used as porogenic solvents. The final monolithic column was characterized by using scanning electron microscopy (SEM) and chromatographic analyses. The monolithic column with a 50 µm i.d. was applied to the analysis of CoQ10 in pistachio samples in nano-LC. This analytical method was validated by means of sensitivity, linearity, precision, recovery, and repeatability. The LOD and LOQ values were 0.05 and 0.48 µg/kg, respectively. The developed method using the monolithic column was optimized to achieve very sensitive analyses of CoQ10 content in the food samples. The applicability of the method was successfully demonstrated by the analysis of CoQ10 in pistachio samples.


Assuntos
Pistacia , Cromatografia Líquida/métodos , Metacrilatos/química , Solventes , Microscopia Eletrônica de Varredura , Cromatografia Líquida de Alta Pressão
20.
J Contemp Dent Pract ; 24(8): 576-581, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193181

RESUMO

AIM: To compare the fracture resistance and the mode of failure between monolith second-generation zirconia and bilayered first-generation zirconia single crowns cemented by resin cement and glass ionomer cement (GIC). MATERIALS AND METHODS: A total of 36 maxillary first premolar crowns (5 mm in length × 4 mm in cervical diameter, with a base of 6 mm) were computer-aided design-computer-aided manufacturing (CAD-CAM) milled. They were divided into the following two groups (n = 18) according to the fabrication techniques: Group M - monolith zirconia crown (1-mm axial thickness and 2-mm occlusal thickness) and group B - bilayer zirconia crown (0.5-mm axial thickness and 1-mm occlusal thickness). Each group was further subdivided into the following two subgroups (n = 9) according to the cement used: Subgroup G - cemented using GIC; subgroup R - cemented using resin cement. All crowns were cemented to their corresponding resin dies and stored in distilled water for 72 hours. Each specimen was mounted to the lower member of the universal testing machine with a load cell of 5 kN and a crosshead speed of 0.5 mm/minute. Failure modes were analyzed for fractured parts using scanning electron microscopy (SEM). RESULTS: Subgroup MR recorded the highest fracture resistance mean value (3616 ± 347.2 N) while the BG subgroup recorded the statistically significant lowest fracture resistance mean value (1728.7 ± 115.3 N). One-way analysis of variance (ANOVA) followed by pairwise Tukey's post hoc tests revealed a statistically significant difference (p = 0.0001) between groups M and B. One-way ANOVA followed by pairwise Tukey's post hoc tests also showed a statistically significant difference (p = 0.0297) between the types of cement used (subgroups G and R). CONCLUSION: Monolith zirconia crowns had better mean fracture resistance than bilayered zirconia crowns. Resin cement improved the fracture resistance compared to GIC. Monolith zirconia crowns showed bulk fracture while bilayered zirconia crowns showed chipping fracture. CLINICAL SIGNIFICANCE: Monolith zirconia crowns present a good prosthetic alternative overcoming the veneer chipping drawback of bilayered zirconia crowns. In addition, resin cement could increase the fracture resistance of zirconia crowns.


Assuntos
Fraturas Ósseas , Cimentos de Resina , Humanos , Cimentos Dentários , Cimentos de Ionômeros de Vidro , Coroas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA