RESUMO
Nonsyndromic clefts of the lip and palate are common birth defects resulting from gene-gene and gene-environment interactions. Mutations in human MSX1 have been linked to orofacial clefting and we show here that Msx1 deficiency causes a growth defect of the medial nasal process (Mnp) in mouse embryos. Although this defect alone does not disrupt lip formation, Msx1-deficient embryos develop a cleft lip when the mother is transiently exposed to reduced oxygen levels or to phenytoin, a drug known to cause embryonic hypoxia. In the absence of interacting environmental factors, the Mnp growth defect caused by Msx1 deficiency is modified by a Pax9-dependent 'morphogenetic regulation', which modulates Mnp shape, rescues lip formation and involves a localized abrogation of Bmp4-mediated repression of Pax9 Analyses of GWAS data revealed a genome-wide significant association of a Gene Ontology morphogenesis term (including assigned roles for MSX1, MSX2, PAX9, BMP4 and GREM1) specifically for nonsyndromic cleft lip with cleft palate. Our data indicate that MSX1 mutations could increase the risk for cleft lip formation by interacting with an impaired morphogenetic regulation that adjusts Mnp shape, or through interactions that inhibit Mnp growth.
Assuntos
Hipóxia/embriologia , Hipóxia/metabolismo , Lábio/embriologia , Fator de Transcrição MSX1/deficiência , Morfogênese , Animais , Proteína Morfogenética Óssea 4/metabolismo , Fenda Labial/embriologia , Fenda Labial/genética , Fenda Labial/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/metabolismo , Humanos , Hipóxia/genética , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Morfogênese/genética , Mutação/genética , Nariz/embriologia , Oxigênio/metabolismo , Fator de Transcrição PAX9/metabolismo , Fenitoína , Respiração , Regulação para Cima/genéticaRESUMO
OBJECTIVE: Muscle segment homeobox gene 1 (MSX1) is widely expressed in craniofacial development and tooth formation. The aim of this study was to report a novel MSX1 mutation in a Chinese family with selective tooth agenesis and abnormal median maxillary labial frenum (MMLF). MATERIALS AND METHODS: Mutation analysis was carried out by whole exome sequencing. The pMD18-T vector was used to verify the mutations. PubMed and Human Gene Mutation Database were searched to analyze the relationship between the mutations in MSX1 and related phenotypes. RESULTS: A novel heterozygous mutation (c.75delG) in MSX1 was detected in the proband and her mother. They presented as oligodontia and lower attached hypertrophy median maxillary labial frenum. 60 MSX1 mutations from 39 reports did not declare malformed MMLF except our cases. Meanwhile, we found that the types and sites of MSX1 mutations may affect the selectivity of tooth agenesis and orofacial cleft. CONCLUSION: This study suggests malformed MMLF as a new phenotype of MSX1 mutation and a specific relationship between MSX1 genotype and phenotype.
Assuntos
Anodontia , Fenda Labial , Fissura Palatina , Humanos , Feminino , Estudos Retrospectivos , Freio Labial , Fenda Labial/genética , Linhagem , Anodontia/genética , Mutação , Fator de Transcrição MSX1/genéticaRESUMO
PURPOSE: The human endometrium consists of different layers (basalis and functionalis) and undergoes different phases throughout the menstrual cycle. In a former paper, our research group was able to describe MSX1 as a positive prognosticator in endometrial carcinomas. The aim of this study was to examine the MSX1 expression in healthy endometrial tissue throughout the different phases to gain more insight on the mechanics of MSX-regulation in the female reproductive system. MATERIALS AND METHODS: In this retrospective study, we investigated a total of 17 normal endometrial tissues (six during proliferative phase and five during early and six during late secretory phase). We used immunohistochemical staining and an immunoreactive score (IRS) to evaluate MSX1 expression. We also investigated correlations with other proteins, that have already been examined in our research group using the same patient collective. RESULTS: MSX1 is expressed in glandular cells during the proliferative phase and downregulated at early and late secretory phase (p = 0.011). Also, a positive correlation between MSX1 and the progesterone-receptor A (PR-A) (correlation coefficient (cc) = 0.0671; p = 0.024), and the progesterone receptor B (PR-B) (cc = 0.0691; p = 0.018) was found. A trend towards negative correlation was recognized between MSX1 and Inhibin Beta-C-expression in glandular cells (cc = - 0.583; p-value = 0.060). CONCLUSION: MSX1 is known as a member of the muscle segment homeobox gene family. MSX1 is a p53-interacting protein and overexpression of homeobox MSX1 induced apoptosis of cancer cells. Here we show that MSX1 is expressed especially in the proliferative phase of glandular epithelial tissue of the normal endometrium. The found positive correlation between MSX1 and progesterone receptors A and B confirms the results of a previous study on cancer tissue by our research group. Because MSX1 is known to be downregulated by progesterone, the found correlation of MSX1 and both PR-A and -B may represent a direct regulation of the MSX1 gene by a PR-response element. Here further investigation would be of interest.
Assuntos
Neoplasias do Endométrio , Progesterona , Humanos , Feminino , Progesterona/metabolismo , Estudos Retrospectivos , Endométrio/metabolismo , Ciclo Menstrual/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismoRESUMO
MSX1 is an important member of the muscle segment homeobox gene (Msh) family and acts as a transcription factor to regulate tissue plasticity, yet its role in goat endometrium remodeling remains elusive. In this study, an immunohistochemical analysis showed that MSX1 was mainly expressed in the luminal and glandular epithelium of goat uterus, and the MSX1 expression was upregulated in pregnancy at days 15 and 18 compared with pregnancy at day 5. In order to explore its function, goat endometrial epithelial cells (gEECs) were treated with 17 ß-estrogen (E2), progesterone (P4), and/or interferon-tau (IFNτ), which were used to mimic the physiological environment of early pregnancy. The results showed that MSX1 was significantly upregulated with E2- and P4-alone treatment, or their combined treatment, and IFNτ further enhanced its expression. The spheroid attachment and PGE2/PGF2α ratio were downregulated by the suppression of MSX1. The combination of E2, P4, and IFNτ treatment induced the plasma membrane transformation (PMT) of gEECs, which mainly showed the upregulation of N-cadherin (CDH2) and concomitant downregulation of the polarity-related genes (ZO-1, α-PKC, Par3, Lgl2, and SCRIB). The knockdown of MSX1 partly hindered the PMT induced by E2, P4, and IFNτ treatment, while the upregulation of CDH2 and the downregulation of the partly polarity-related genes were significantly enhanced when MSX1 was overexpressed. Moreover, MSX1 regulated the CDH2 expression by activating the endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR) pathway. Collectively, these results suggest that MSX1 was involved in the PMT of the gEECs through the ER stress-mediated UPR pathway, which affects endometrial adhesion and secretion function.
Assuntos
Endométrio , Cabras , Gravidez , Feminino , Animais , Cabras/metabolismo , Endométrio/metabolismo , Progesterona/metabolismo , Membrana Celular , Células Epiteliais/metabolismo , EpitélioRESUMO
In recent research, there has been a growing awareness of the role of genetic factors in the positioning and eruption of teeth in the maxilla and mandible. This study aimed to evaluate the potential of specific polymorphic markers of single nucleotide polymorphisms (SNPs) located within the PAX9, MSX1, AXIN2, and IRF6 genes to determine the predisposition to tooth impaction. The study participants were divided into two groups: the first group consisted of individuals with at least one impacted secondary tooth. In contrast, the second group (control group) had no impacted teeth in their jaws. To analyze the genes, real-time PCR (polymerase chain reaction) and TaqMan probes were utilized to detect the selected polymorphisms. The findings suggest that disruptions in the structure and function of the mentioned genetic factors such as polymorphic and haplotype variants of PAX9, MSX1, AXIN2, and IRF6 genes, which play a direct role in tooth and periodontal tissue development, might be significant factors in tooth impaction in individuals with genetic variations. Therefore, it is reasonable to hypothesize that tooth impaction may be influenced, at least in part, by the presence of specific genetic markers, including different allelic variants of the PAX9, AXIN2, and IRF6 genes, and especially MSX1.
RESUMO
OBJECTIVES: This study investigated the association of MSX1 gene variants rs3821949 and rs12532 with nonsyndromic cleft lip and/or palate (NSCL/P) in the Pakistani population. DESIGN: Comparative cross-sectional study.Setting: Multicenter of CL/P malformation.Patients/Participants: Unrelated Non-Syndromic cleft Lip/Palate patients and healthy controls were enrolled. METHODS: One hundred (n = 100) subjects with NSCL/P and n = 50 unrelated healthy controls were enrolled in a multicenter comparative cross-sectional study. A tetra amplification refractory mutation system (ARMS) polymerase chain reaction (PCR) was performed to analyze MSXI gene single nucleotide variants (SNVs). RESULTS: Among 100 NSCL/P subjects, the majority were males (56%; male: female = 1.27: 1). Most of the cases (74%) had cleft lip and palate (CLP) compared to isolated clefts. Genotyping of MSX1 gene variant rs3821949 showed an increased risk for NSCL/P in various genetic models (P < 0.0001), and the A allele exhibited a more than 4-fold increased risk among cases (OR = 4.22: 95% CI = 2.16-8.22; P < 0.0001). Our investigation found no significant difference between the rs12532 variation and NSCL/P. CONCLUSION: Our study findings suggest that MSX1 gene variants may increase predisposition to NSCL/P in the Pakistani population. Further studies comprising large samples are required to identify the genetic aetiology of NSCL/P among our people.
RESUMO
OBJECTIVE: The purpose of this study was to investigate the contribution of MSX1 gene polymorphisms to the risk of developing NSCLP. DESIGN: Case-Control Study. SETTING: A tertiary care centre. PATIENTS/PARTICIPANTS: The sample consisted of 200 subjects (100 cases and 100 controls). INTERVENTIONS: None. MAIN OUTCOME MEASURE(S): Genotyping was performed by restriction fragment length polymorphism. Allele and genotype frequencies were calculated between patients and controls and analyzed using online Web Tools such as SISA and SNPstats. The MSX1 gene polymorphisms c. 799 GT, c.458 CA can be risk factors in the development of orofacial clefts. RESULTS: In the cases, an association was found between NSCLP and c.799 and c.458 of the MSX1 gene when compared with the control. The dominant and overdominant models, c. 799 GT, c.458 CA genotypes and c. 799â T, c.458 A alleles in the population are said to be the main risk factors to develop the NSCLP in our study population. The genotype variation of c 799 G/T and c.458 C/A are revealed to be specifically contributing to an NSCLP-type Cleft lip and Palate. It is worth noting that NSCLP females in the study population showed a stronger association with heterozygous genotypes of c.799 and c.458. However, further investigation with a larger cohort is necessary to confirm these findings. CONCLUSION: Overall the results of the study revealed that MSX1 c 799 G > T and c.458 C > A can be considered as one of the genetic risk factors in the formation of Non-Syndromic Cleft Lip and Palate in the study population.
RESUMO
The expression pattern of the markers p19, Ki-67, MSX1, MSX2, PDL1, pRB, and CYCLINA2 was quantitatively and semiquantitatively analyzed in histologic sections of the developing and postnatal human eye at week 8, in retinoblastoma, and in various uveal melanomas post hoc studies by double immunofluorescence. The p19 immunoreactivity characterized retinal and/or choroidal cells in healthy and tumor tissues: expression was lower in the postnatal retina than in the developing retina and retinoblastoma, whereas it was high in epithelioid melanomas. Ki67 expression was high in the developing eye, retinoblastoma, and choroidal melanomas. MSX1 and MSX2 expression was similar in the developing eye and retinoblastoma, whereas it was absent in the postnatal eye. Their different expression was evident between epithelioid and myxoid melanomas. Similarly, PDL1 was absent in epithelioid melanomas, whereas it was highly expressed in developing and tumor tissues. Expression of pRB and CYCA2 was characteristic of developing and tumorous eye samples but not of the healthy postnatal eye. The observed expression differences of the analyzed markers correlate with the origin and stage of cell differentiation of the tissue samples. The fine balance of expression could play a role in both human eye development and ocular tumorigenesis. Therefore, understanding their relationship and interplay could open new avenues for potential therapeutic interventions and a better understanding of the mechanisms underlying the developmental plasticity of the eye and the development of neoplasms.
Assuntos
Melanoma , Neoplasias da Retina , Retinoblastoma , Carcinogênese/genética , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Desenvolvimento Embrionário , Humanos , Recém-Nascido , Melanoma/metabolismo , Neoplasias da Retina/patologia , Neoplasias UveaisRESUMO
BACKGROUND: This study aimed to investigate the genetic association of specific Single Nucleotide Polymorphisms (SNPs) within the muscle segment homeobox gene 1 (MSX1) with susceptibility to the peg-shaped teeth in 36 Jordanian Arab families and case-control samples in the Jordanian Arab population. METHODS: This cohort involved 108 individuals (36 trios families), which were used for family-based genetic study. Additionally, 56 patients and 57 controls were used for case-control study. Genomic DNA samples from both families and case-control were extracted according to distinguished processes. Then, polymerase chain reaction technique (PCR) was conducted using specific primers for the axons of the MSX1. Moreover, DNA sequencing genotyping method analysis of SNPs was used to detect specified SNPs in the MSX1 linked with peg-shaped teeth. Hardy-Weinberg Equilibrium and Chi-square were used to evaluate the data quality and the presence of any genotypic error. In addition, Transmission Disequilibrium Test (TDT) was used identify family-based association in which trios of parents and proband are used. RESULTS: The results of this study showed fourteen polymorphic sites in this gene, eight of them (rs121913129, rs104893852, rs104893853, rs121913130, rs104893850, rs1095, rs3775261, and rs1042484) were none-polymorphic. Meanwhile, the minor allele frequencies of the rest of the SNPs were polymorphic (rs8670, rs12532, rs3821949, rs4464513, rs1907998, and rs6446693). However, none of these SNPs were associated with peg-shaped teeth. Moreover, the haplotype genetic analysis revealed that there was no genetic association with peg-shaped teeth disorder susceptibility (P > 0.05) in the Jordanian families of Arab descent. CONCLUSIONS: The present findings can be used in estimation of prevalence of peg-shaped teeth in the Jordanian population. However, our findings revealed that there is no evidence that the MSX1 polymorphisms had a crucial role in the peg-shaped teeth phenomenon, emphasizing that other genes might have this role. These findings are beneficial for clinicians to comprehensively understand the molecular aspects of teeth abnormalities.
Assuntos
Fator de Transcrição MSX1 , Anormalidades Dentárias , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Genótipo , Humanos , Jordânia , Fator de Transcrição MSX1/genética , Polimorfismo de Nucleotídeo Único/genética , Anormalidades Dentárias/genéticaRESUMO
BACKGROUND: Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. RESULTS: In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9-/- mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9-/- mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9-/- mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9-/- mice. CONCLUSIONS: Msx1 haploinsufficiency mitigates the arch artery defects in Pax9-/- mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9-/- mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.
Assuntos
Sistema Cardiovascular , Haploinsuficiência , Fator de Transcrição MSX1 , Animais , Região Branquial , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Crista Neural , Fator de Transcrição PAX9 , FenótipoRESUMO
Myogenesis is an important and complicated biological process, especially during the process of embryonic development. The homeoprotein Msx1 is a crucial transcriptional repressor of myogenesis and maintains myogenic precursor cells in an undifferentiated, proliferative state. However, the molecular mechanism through which Msx1 coordinates myogenesis remains to be elucidated. Here, we determine the interacting partner proteins of Msx1 in myoblast cells by a proteomic screening method. Msx1 is found to interact with 55 proteins, among which our data demonstrate that the cooperation of Runt-related transcription factor 1 (Runx1) with Msx1 is required for myoblast cell differentiation. Our findings provide important insights into the mechanistic roles of Msx1 in myoblast cell differentiation, and lays foundation for the myogenic differentiation process.
Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core , Fator de Transcrição MSX1 , Mioblastos , Animais , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Técnicas de Inativação de Genes , Fator de Transcrição MSX1/química , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Fator de Transcrição MSX1/fisiologia , Camundongos , Mioblastos/citologia , Mioblastos/metabolismoRESUMO
Cutaneous melanoma represents one of the deadliest types of skin cancer. The prognosis strongly depends on the disease stage, thus early detection is crucial. New therapies, including BRAF and MEK inhibitors and immunotherapies, have significantly improved the survival of patients in the last decade. However, intrinsic and acquired resistance is still a challenge. In this review, we discuss two major aspects that contribute to the aggressiveness of melanoma, namely, the embryonic origin of melanocytes and melanoma cells and cellular plasticity. First, we summarize the physiological function of epidermal melanocytes and their development from precursor cells that originate from the neural crest (NC). Next, we discuss the concepts of intratumoral heterogeneity, cellular plasticity, and phenotype switching that enable melanoma to adapt to changes in the tumor microenvironment and promote disease progression and drug resistance. Finally, we further dissect the connection of these two aspects by focusing on the transcriptional regulators MSX1, MITF, SOX10, PAX3, and FOXD3. These factors play a key role in NC initiation, NC cell migration, and melanocyte formation, and we discuss how they contribute to cellular plasticity and drug resistance in melanoma.
Assuntos
Plasticidade Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Melanoma/metabolismo , Crista Neural/metabolismo , Neoplasias Cutâneas/metabolismo , Acrilonitrila/análogos & derivados , Acrilonitrila/farmacologia , Compostos de Anilina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular , Movimento Celular , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Transcrição MSX1/genética , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição PAX3/genética , Fenótipo , Pirimidinonas/farmacologia , Fatores de Transcrição SOXE/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologiaRESUMO
OBJECTIVE: Cleft palate is among the most frequent congenital defects in humans. While gene-environment multifactorial threshold models have been proposed to explain this cleft palate formation, only a few experimental models have verified this theory. This study aimed to clarify whether gene-environment interaction can cause cleft palate through a combination of specific genetic and environmental factors. METHODS: Msx1 heterozygosity in mice (Msx1+/-) was selected as a genetic factor since human MSX1 gene mutations may cause nonsyndromic cleft palate. As an environmental factor, hypoxic stress was induced in pregnant mice by administration of the antiepileptic drug phenytoin, a known arrhythmia inducer, during palatal development from embryonic day (E) 11 to E14. Embryos were dissected at E13 for histological analysis or at E17 for recording of the palatal state. RESULTS: Phenytoin administration downregulated cell proliferation in palatal processes in both wild-type and Msx1+/- embryos. Bone morphogenetic protein 4 (Bmp4) expression was slightly downregulated in the anterior palatal process of Msx1+/- embryos. Although Msx1+/- embryos do not show cleft palate under normal conditions, phenytoin administration induced a significantly higher incidence of cleft palate in Msx1+/- embryos compared to wild-type littermates. CONCLUSION: Our data suggest that cleft palate may occur because of the additive effects of Bmp4 downregulation as a result of Msx1 heterozygosity and decreased cell proliferation upon hypoxic stress. Human carriers of MSX1 mutations may have to take more precautions during pregnancy to avoid exposure to environmental risks.
Assuntos
Fissura Palatina , Fator de Transcrição MSX1 , Estresse Oxidativo , Animais , Fissura Palatina/induzido quimicamente , Fissura Palatina/genética , Fator de Transcrição MSX1/genética , Camundongos , Palato , Fenitoína , Transdução de SinaisRESUMO
BACKGROUND: Different genes and loci that are associated with non-syndromic developmental tooth agenesis (TA) have the same causation pathway in the development of tumours including breast cancer (BC), epithelial ovarian cancer (EOC), colorectal cancer (CRC) and lung cancer (LC). OBJECTIVES: To assess the link between TA and the development of cancer. SEARCH SOURCES: This registered review included a comprehensive search of electronic databases (Cochrane Central Register of Controlled Trials [CENTRAL], LILACS, Scopus, Web of Science and Medline via Ovid) until 1 April 2020, supplemented by manual, grey literature and reference lists search. There was no restriction in term of date of publication, gender, race or type of hypodontia. DATA SELECTION: The primary outcome was the relationship between TA and cancer. The secondary outcome was to identify the genetic correlation between TA and cancer. DATA EXTRACTION: Study selection, data extraction and risk of bias assessment were performed independently and induplicate by two reviewers, with disputes resolved by a third reviewer. RESULTS: Eight studies with a moderate-high risk of bias were included in the final review, with a total of 5821 participants. Due to the heterogeneity among the included studies, the data were presented narratively. Limited studies reported a high prevalence of EOC (19.2%-20%) and CRC (82%-100%) in individuals with TA (depending on the study) compared to those without TA (3% for EOC and 0% for CRC). While others reported a weak correlation between EOC and CRC and TA (P > 0.05). Weak evidence suggested a strong correlation between breast, cervical uterine and prostate cancers and TA (P < 0.05). CONCLUSIONS: Though low-quality evidence suggests a link between TA and cancer, it was not possible to verify that TA can hold a predictive value as a marker for cancers. Further research is needed to confirm the association. REGISTRATION: PROSPERO (CRD42020139751).
Assuntos
Anodontia , Neoplasias , Dente , Anodontia/genética , Humanos , MasculinoRESUMO
Mutations of MSX1 have been associated with nonsyndromic hypodontia. To seek the causal gene mutation sites in a family with nonsyndromic oligodontia, whole-exome sequencing (WES) was performed to seek the causative locus of the family. The candidate mutation was further identified by Sanger sequencing afterward. Two mutations of MSX1 were found both in the proband and her mother. One novel heterozygous missense mutation (c.C667G, p.R223G) of MSX1 inherited from the asymptomatic mother with mosaic mutation was located in the highly conserved fragment of exon 2. The other was a synonymous mutation (c.C348T, p.G116G) in exon 1, which had been reported. The novel maternal heterozygous missense mutation (c.C667G, p.R223G) was likely to be the major reason for nonsyndromic oligodontia in the family. This is the first mosaic variant that has been recorded of the MSX1 gene. Our study expands the phenotype-genotype correlation associated with MSX1 variants. Our study also suggests that the determination of the mosaicism is essential for precise genetic counseling if a disease appears to arise de novo.
Assuntos
Anodontia/etiologia , Heterozigoto , Fator de Transcrição MSX1/genética , Mosaicismo , Mutação , Anodontia/patologia , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino , Linhagem , FenótipoRESUMO
MSX1 is a causative gene for oligodontia in humans. Although conventional Msx1-deficient mice die neonatally, a mutant mouse lacking the C-terminus MH6 domain of MSX1 (Msx1ΔMH6/ΔMH6) showed two different phenotypes; newborn homozygotes with cleft palates died neonatally, whereas those with thin palates remained alive and had craniofacial dysplasia and growth retardation compared with wild-type mice, with most mice dying by the age of 4-5 weeks. In a previously reported case of human oligodontia caused by a heterozygous defect of the Msx1 MH6 domain, a small foramen was observed on the occipital bone. The aim of this study was to test the hypothesis that the Msx1 MH6 domain is involved in bone formation in vivo. In Msx1ΔMH6/ΔMH6 mice, cranial suture fusion was delayed at embryonic day 18.5, and the anteroposterior cranial diameter was smaller and long bone length was decreased at 3 weeks of age. The femoral epiphysis showed no change in the trabecular number, but decreased bone mass, bone density, and trabecular width in Msx1ΔMH6/ΔMH6 mice. In addition, cancellous bone mass was reduced and the cartilage layer in the growth plate was thinner in Msx1ΔMH6/ΔMH6 mice. The mRNA expression levels of major osteoblast and chondrocyte differentiation marker genes were decreased in Msx1ΔMH6/ΔMH6 mice compared with wild-type mice. These findings suggest that the C-terminal region including the MH6 domain of MSX1 plays important roles not only in tooth development and palatal fusion, but also in postnatal bone formation.
Assuntos
Desenvolvimento Ósseo , Fator de Transcrição MSX1/química , Fator de Transcrição MSX1/metabolismo , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo/genética , Diferenciação Celular , Condrócitos/citologia , Regulação da Expressão Gênica , Masculino , Camundongos , Morfogênese , Osteoblastos/citologia , Domínios Proteicos , Deleção de Sequência , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Kinesin superfamily (KIFs) has a long-reported significant influence on the initiation, development, and progress of breast cancer. However, the prognostic value of whole family members was poorly done. Our study intends to demonstrate the value of kinesin superfamily members as prognostic biomarkers as well as a therapeutic target of breast cancer. METHODS: Comprehensive bioinformatics analyses were done using data from TCGA, GEO, METABRIC, and GTEx. LASSO regression was done to select tumor-related members. Nomogram was constructed to predict the overall survival (OS) of breast cancer patients. Expression profiles were testified by quantitative RT-PCR and immunohistochemistry. Transcription factor, GO and KEGG enrichments were done to explore regulatory mechanism and functions. RESULTS: A total of 20 differentially expressed KIFs were identified between breast cancer and normal tissue with 4 (KIF17, KIF26A, KIF7, KIFC3) downregulated and 16 (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF20B, KIF22, KIF23, KIF24, KIF26B, KIF2C, KIF3B, KIF4A, KIFC1) overexpressed. Among which, 11 overexpressed KIFs (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIF4A, KIFC1) significantly correlated with worse OS, relapse-free survival (RFS) and distant metastasis-free survival (DMFS) of breast cancer. A 6-KIFs-based risk score (KIF10, KIF15, KIF18A, KIF18B, KIF20A, KIF4A) was generated by LASSO regression with a nomogram validated an accurate predictive efficacy. Both mRNA and protein expression of KIFs are experimentally demonstrated upregulated in breast cancer patients. Msh Homeobox 1 (MSX1) was identified as transcription factors of KIFs in breast cancer. GO and KEGG enrichments revealed functions and pathways affected in breast cancer. CONCLUSION: Overexpression of tumor-related KIFs correlate with worse outcomes of breast cancer patients and can work as potential prognostic biomarkers.
RESUMO
Prognostic factors are of great interest in patients with endometrial cancer. One potential factor could be the protein MSX1, a transcription repressor, that has an inhibitory effect on the cell cycle. For this study, endometrioid endometrial carcinomas (n = 53), clear cell endometrial carcinomas (n = 6), endometrioid ovarian carcinomas (n = 19), and clear cell ovarian carcinomas (n = 11) were immunochemically stained for the protein MSX1 and evaluated using the immunoreactive score (IRS). A significant stronger expression of MSX1 was found in endometrioid endometrial carcinomas (p < 0.001), in grading 2 (moderate differentiation) (p = 0.001), and in tumor material of patients with no involvement of lymph nodes (p = 0.031). Correlations were found between MSX1 expression and the expression of ß-Catenin, p21, p53, and the steroid receptors ERα, ERß, PRα, and PRß. A significant (p = 0.023) better survival for patients with an MSX1 expression in more than 10% of the tumor cells was observed for endometrioid endometrial carcinomas (21.3 years median survival (MSX1-positive) versus 17.3 years (MSX1-negative)). Although there is evidence that MSX1 expression correlates with improved long-term survival, further studies are necessary to evaluate if MSX1 can be used as a prognostic marker.
Assuntos
Neoplasias do Endométrio/metabolismo , Fator de Transcrição MSX1/metabolismo , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Metilação de DNA/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/fisiologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Uterinas/patologia , Útero/metabolismo , Útero/patologiaRESUMO
The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions.
Assuntos
Crista Neural/citologia , Crista Neural/metabolismo , Crista Neural/fisiologia , Animais , Evolução Biológica , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular , Embrião de Galinha , Ectoderma/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Melanócitos/citologia , Sistema Nervoso/metabolismo , Placa Neural/metabolismo , Placa Neural/fisiologia , Neurogênese/fisiologia , Neurulação/fisiologia , Transdução de Sinais , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Implantation of embryos needs endometrial receptivity. Mineralocorticoids is one of the causes influencing the implantation window. This study targeted to evaluation fludrocortisone different properties on endometrial receptivity. The objective of this study was to assess whether treatment with fludrocortisone could impact the expression of diverse genes and proteins that are involved in uterine receptivity in mice. In this study, 40 female adult BALB/c mice were used. The samples were allocated to four groups of ten. Control group (C) received: vehicle; fludrocortisone group (FCA): received 1.5 mg/kg fludrocortisone; PP242 group (PP242): received 30 mg/kg PP242; fludrocortisone+PP242 group (FCA+PP242): received fludrocortisone and PP242. Mice were killed on window implantation day after mating and confirmed pregnancy. The endometrial epithelium of mouse was collected to assess mRNA expression of leukemia inhibitory factor (LIF), mucin-1 (MUC1), heparin-binding epidermal growth factor (HB-EGF), (Msx.1), miRNA Let-7a, and miRNA 223-3p as well as protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the uterine using real-time PCR and western blot, respectively. In comparison with the control group, fludrocortisone administration upregulated the expression of LIF, HB-EGF, Msx.1, miRNA Let-7a, ERK1/2, and mTOR in the epithelial endometrium. The PP242-treated group demonstrated a significant rise in the expression of MUC1, miRNA 223-3p and a remarkable decline in ERK1/2 and p-4E-BP1 levels in comparison with the control group. Combination therapy of (FCA+PP242) resulted in a remarkable rise in LIF, Msx-1, HB-EGF, ERK1/2, and mTOR levels, in comparison with the PP242 group. Furthermore, combination therapy of (FCA+PP242) downregulated the expression of MUC1 in comparison with the PP242-treated group. According to the results, fludrocortisone affected uterine receptivity possibly by means of modulating the expression of genes involved in the uterine receptivity and activation of the ERK1/2-mTOR pathway.