Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Metab Eng ; 82: 225-237, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369050

RESUMO

Cis, cis-muconic acid (MA) is widely used as a key starting material in the synthesis of diverse polymers. The growing demand in these industries has led to an increased need for MA. Here, we constructed recombinant Corynebacterium glutamicum by systems metabolic engineering, which exhibit high efficiency in the production of MA. Firstly, the three major degradation pathways were disrupted in the MA production process. Subsequently, metabolic optimization strategies were predicted by computational design and the shikimate pathway was reconstructed, significantly enhancing its metabolic flux. Finally, through optimization and integration of key genes involved in MA production, the recombinant strain produced 88.2 g/L of MA with the yield of 0.30 mol/mol glucose in the 5 L bioreactor. This titer represents the highest reported titer achieved using glucose as the carbon source in current studies, and the yield is the highest reported for MA production from glucose in Corynebacterium glutamicum. Furthermore, to enable the utilization of more cost-effective glucose derived from corn straw hydrolysate, we subjected the strain to adaptive laboratory evolution in corn straw hydrolysate. Ultimately, we successfully achieved MA production in a high solid loading of corn straw hydrolysate (with the glucose concentration of 83.56 g/L), resulting in a titer of 19.9 g/L for MA, which is 4.1 times higher than that of the original strain. Additionally, the glucose yield was improved to 0.33 mol/mol. These provide possibilities for a greener and more sustainable production of MA.


Assuntos
Corynebacterium glutamicum , Ácido Sórbico/análogos & derivados , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Reatores Biológicos/microbiologia , Glucose/genética , Glucose/metabolismo , Ácido Sórbico/metabolismo , Engenharia Metabólica/métodos , Fermentação
2.
Metab Eng ; 81: 88-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000549

RESUMO

Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Glucose/metabolismo , Reatores Biológicos
3.
Appl Environ Microbiol ; 90(1): e0166023, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38117061

RESUMO

The platform chemical cis,cis-muconic acid (ccMA) provides facile access to a number of monomers used in the synthesis of commercial plastics. It is also a metabolic intermediate in the ß-ketoadipic acid pathway of many bacteria and, therefore, a current target for microbial production from abundant renewable resources via metabolic engineering. This study investigates Novosphingobium aromaticivorans DSM12444 as a chassis for the production of ccMA from biomass aromatics. The N. aromaticivorans genome predicts that it encodes a previously uncharacterized protocatechuic acid (PCA) decarboxylase and a catechol 1,2-dioxygenase, which would be necessary for the conversion of aromatic metabolic intermediates to ccMA. This study confirmed the activity of these two enzymes in vitro and compared their activity to ones that have been previously characterized and used in ccMA production. From these results, we generated one strain that is completely derived from native genes and a second that contains genes previously used in microbial engineering synthesis of this compound. Both of these strains exhibited stoichiometric production of ccMA from PCA and produced greater than 100% yield of ccMA from the aromatic monomers that were identified in liquor derived from alkaline pretreated biomass. Our results show that a strain completely derived from native genes and one containing homologs from other hosts are both capable of stoichiometric production of ccMA from biomass aromatics. Overall, this work combines previously unknown aspects of aromatic metabolism in N. aromaticivorans and the genetic tractability of this organism to generate strains that produce ccMA from deconstructed biomass.IMPORTANCEThe production of commodity chemicals from renewable resources is an important goal toward increasing the environmental and economic sustainability of industrial processes. The aromatics in plant biomass are an underutilized and abundant renewable resource for the production of valuable chemicals. However, due to the chemical composition of plant biomass, many deconstruction methods generate a heterogeneous mixture of aromatics, thus making it difficult to extract valuable chemicals using current methods. Therefore, recent efforts have focused on harnessing the pathways of microorganisms to convert a diverse set of aromatics into a single product. Novosphingobium aromaticivorans DSM12444 has the native ability to metabolize a wide range of aromatics and, thus, is a potential chassis for conversion of these abundant compounds to commodity chemicals. This study reports on new features of N. aromaticivorans that can be used to produce the commodity chemical cis,cis-muconic acid from renewable and abundant biomass aromatics.


Assuntos
Hidroxibenzoatos , Sphingomonadaceae , Biomassa , Sphingomonadaceae/metabolismo , Ácido Sórbico/metabolismo , Lignina/metabolismo , Engenharia Metabólica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38944415

RESUMO

Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism. ONE-SENTENCE SUMMARY: High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and ß-ketoadipate pathways.


Assuntos
Técnicas Biossensoriais , Ácido Corísmico , Corynebacterium glutamicum , Ácido Sórbico , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Técnicas Biossensoriais/métodos , Ácido Sórbico/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Corísmico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética
5.
Metab Eng ; 75: 153-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563956

RESUMO

Lignin displays a highly challenging renewable. To date, massive amounts of lignin, generated in lignocellulosic processing facilities, are for the most part merely burned due to lacking value-added alternatives. Aromatic lignin monomers of recognized relevance are in particular vanillin, and to a lesser extent vanillate, because they are accessible at high yield from softwood-lignin using industrially operated alkaline oxidative depolymerization. Here, we metabolically engineered C. glutamicum towards cis, cis-muconate (MA) production from these key aromatics. Starting from the previously created catechol-based producer C. glutamicum MA-2, systems metabolic engineering first discovered an unspecific aromatic aldehyde reductase that formed aromatic alcohols from vanillin, protocatechualdehyde, and p- hydroxybenzaldehyde, and was responsible for the conversion up to 57% of vanillin into vanillyl alcohol. The alcohol was not re-consumed by the microbe later, posing a strong drawback on the producer. The identification and subsequent elimination of the encoding fudC gene completely abolished vanillyl alcohol formation. Second, the initially weak flux through the native vanillin and vanillate metabolism was enhanced up to 2.9-fold by implementing synthetic pathway modules. Third, the most efficient protocatechuate decarboxylase AroY for conversion of the midstream pathway intermediate protocatechuate into catechol was identified out of several variants in native and codon optimized form and expressed together with the respective helper proteins. Fourth, the streamlined modules were all genomically combined which yielded the final strain MA-9. MA-9 produced bio-based MA from vanillin, vanillate, and seven structurally related aromatics at maximum selectivity. In addition, MA production from softwood-based vanillin, obtained through alkaline depolymerization, was demonstrated.


Assuntos
Corynebacterium glutamicum , Lignina , Lignina/metabolismo , Engenharia Metabólica , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Catecóis/metabolismo
6.
Biomarkers ; 28(7): 637-642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878492

RESUMO

Background. Benzene is a known human carcinogen. Human exposure to benzene can be assessed by measuring trans, trans-muconic acid (MUCA) in urine. Golestan Province in northeastern Iran has been reported to have high incidence of esophageal cancer linked to the use of tobacco products. This manuscript evaluates the urinary MUCA concentrations among the participants of the Golestan Cohort Study (GCS).Methods. We analyzed MUCA concentration in 177 GCS participants' urine samples and performed nonparametric pairwise multiple comparisons to determine statistically significant difference among six different product use groups. Mixed effects model was fitted on 22 participants who exclusively smoked cigarette and 51 participants who were classified as nonusers. The urinary MUCA data were collected at the baseline and approximately five years later, and intraclass correlation coefficient (ICC) was calculated from the model.Results. Compared with nonusers, tobacco smoking was associated with higher urinary MUCA concentrations. Based on the nonparametric test of pairwise multiple comparisons, MUCA concentrations among participants who smoked combusted tobacco products were statistically significantly higher compared to nonusers. Urinary MUCA collected five years apart from the same individuals showed moderate reliability (ICC = 0.41), which was expected given the relatively short half-life (∼6 h) of MUCA.Conclusion. Our study revealed that tobacco smoke was positively associated with increased levels of urinary MUCA concentration, indicating that it is a significant source of benzene exposure among GCS participants.


Assuntos
Benzeno , Fumaça , Humanos , Benzeno/análise , Biomarcadores/urina , Estudos de Coortes , Reprodutibilidade dos Testes
7.
Metab Eng ; 70: 31-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34982998

RESUMO

The transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate (PCA) is catalyzed by flavoprotein oxygenases known as para-hydroxybenzoate-3-hydroxylases (PHBHs). In Pseudomonas putida KT2440 (P. putida) strains engineered to convert lignin-related aromatic compounds to muconic acid (MA), PHBH activity is rate-limiting, as indicated by the accumulation of 4-HBA, which ultimately limits MA productivity. Here, we hypothesized that replacement of PobA, the native P. putida PHBH, with PraI, a PHBH from Paenibacillus sp. JJ-1b with a broader nicotinamide cofactor preference, could alleviate this bottleneck. Biochemical assays confirmed the strict preference of NADPH for PobA, while PraI can utilize either NADH or NADPH. Kinetic assays demonstrated that both PobA and PraI can utilize NADPH with comparable catalytic efficiency and that PraI also efficiently utilizes NADH at roughly half the catalytic efficiency. The X-ray crystal structure of PraI was solved and revealed absolute conservation of the active site architecture to other PHBH structures despite their differing cofactor preferences. To understand the effect in vivo, we compared three P. putida strains engineered to produce MA from p-coumarate (pCA), showing that expression of praI leads to lower 4-HBA accumulation and decreased NADP+/NADPH ratios relative to strains harboring pobA, indicative of a relieved 4-HBA bottleneck due to increased NADPH availability. In bioreactor cultivations, a strain exclusively expressing praI achieved a titer of 40 g/L MA at 100% molar yield and a productivity of 0.5 g/L/h. Overall, this study demonstrates the benefit of sampling readily available natural enzyme diversity for debottlenecking metabolic flux in an engineered strain for microbial conversion of lignin-derived compounds to value-added products.


Assuntos
Pseudomonas putida , Hidroxibenzoatos/metabolismo , Hidroxilação , Parabenos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
8.
Appl Environ Microbiol ; 88(16): e0072422, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938864

RESUMO

Acetovanillone is a major aromatic monomer produced in oxidative/base-catalyzed lignin depolymerization. However, the production of chemical products from acetovanillone has not been explored due to the lack of information on the microbial acetovanillone catabolic system. Here, the acvABCDEF genes were identified as specifically induced genes during the growth of Sphingobium sp. strain SYK-6 cells with acetovanillone and these genes were essential for SYK-6 growth on acetovanillone and acetosyringone (a syringyl-type acetophenone derivative). AcvAB and AcvF produced in Escherichia coli phosphorylated acetovanillone/acetosyringone and dephosphorylated the phosphorylated acetovanillone/acetosyringone, respectively. AcvCDE produced in Sphingobium japonicum UT26S carboxylated the reaction products generated from acetovanillone/acetosyringone by AcvAB and AcvF into vanilloyl acetic acid/3-(4-hydroxy-3,5-dimethoxyphenyl)-3-oxopropanoic acid. To demonstrate the feasibility of producing cis,cis-muconic acid from acetovanillone, a metabolic modification on a mutant of Pseudomonas sp. strain NGC7 that accumulates cis,cis-muconic acid from catechol was performed. The resulting strain expressing vceA and vceB required for converting vanilloyl acetic acid to vanillic acid and aroY encoding protocatechuic acid decarboxylase in addition to acvABCDEF successfully converted 1.2 mM acetovanillone to approximately equimolar cis,cis-muconic acid. Our results are expected to help improve the yield and purity of value-added chemical production from lignin through biological funneling. IMPORTANCE In the alkaline oxidation of lignin, aromatic aldehydes (vanillin, syringaldehyde, and p-hydroxybenzaldehyde), aromatic acids (vanillic acid, syringic acid, and p-hydroxybenzoic acid), and acetophenone-related compounds (acetovanillone, acetosyringone, and 4'-hydroxyacetophenone) are produced as major aromatic monomers. Also, base-catalyzed depolymerization of guaiacyl lignin resulted in vanillin, vanillic acid, guaiacol, and acetovanillone as primary aromatic monomers. To date, microbial catabolic systems of vanillin, vanillic acid, and guaiacol have been well characterized, and the production of value-added chemicals from them has also been explored. However, due to the lack of information on the microbial acetovanillone and acetosyringone catabolic system, chemical production from acetovanillone and acetosyringone has not been achieved. This study elucidated the acetovanillone/acetosyringone catabolic system and demonstrates the potential of using these genes for the production of value-added chemicals from these compounds.


Assuntos
Lignina , Ácido Vanílico , Acetofenonas , Escherichia coli/genética , Guaiacol , Lignina/metabolismo , Ácido Vanílico/metabolismo
9.
Rocz Panstw Zakl Hig ; 73(1): 109-119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35322963

RESUMO

Background: The Thai government has been developing its Eastern Economic Corridor (EEC), which spans three provinces, with the aim of improving connections with other Asian nations. Since this strategic development, the number of trucks, private car, and passenger car registrations have continued to grow, with a corresponding increase in related to benzene, toluene, ethylbenzene, and xylene (BTEX). Objectives: This study aims to compare the levels of trans, trans-muconic acid (t, t MA); toluene (TU); mandelic acid (MA); and methyl hippuric acid (MHA) in the urine of gas station employees, considering demographic and occupational factors. Material and methods: These employees worked either near or away from the fuel dispenser, and there 100 people in each group. Data were collected using interviews and testing environmental air and urine samples for benzene, toluene, ethyl benzene, and xylene (BTEX). Results: The results showed that BTEX concentrations were just detectable in all 200 cases (100%). The mean (±SD) urine level of t, t MA was 449.28 (±213.32) µg/g creatinine, while the median (min-max) was 428.23 (95.58-1202.56) µg/g creatinine. The mean TU was 0.011 (0.001) mg/L, while the median (min-max) was 0.011 (0.010-0.013) mg/L. MA levels were higher inside the pollution control zone than they were outside the zone (p=.009). Employees who practiced poor personal hygiene had relatively high urinary toluene and MHA levels (p=.009) and those who did not wear personal protective equipment (PPE) had relatively high MA levels (p=.040). Conclusion: The results of this study revealed statistically significant biomarkers influencing the levels of t, t MA; TU; MA; and MHA in urine. The recommendations of this study are that employers should provide their employees with suitable PPE, check regularly to ensure that it is worn, and strongly encourage employees to take care of their sanitation. Employees should take appropriate breaks and days off to minimize their exposure to BTEX.


Assuntos
Exposição Ocupacional , Biomarcadores , Monitoramento Ambiental/métodos , União Europeia , Humanos , Tailândia
10.
Metab Eng ; 64: 52-63, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465478

RESUMO

Synthetic biology enables the production of small molecules by recombinant microbes for pharma, food, and materials applications. The secretion of products reduces the cost of separation and purification, but it is challenging to engineer due to the limited understanding of the transporter proteins' functions. Here we describe a method for genome-wide transporter disruption that, in combination with a metabolite biosensor, enables the identification of transporters impacting the production of a given target metabolite in yeast Saccharomyces cerevisiae. We applied the method to study the transport of xenobiotic compounds, cis,cis-muconic acid (CCM), protocatechuic acid (PCA), and betaxanthins. We found 22 transporters that influenced the production of CCM or PCA. The transporter of the 12-spanner drug:H(+) antiporter (DHA1) family Tpo2p was further confirmed to import CCM and PCA in Xenopus expression assays. We also identified three transporter proteins (Qdr1p, Qdr2p, and Apl1p) involved in betaxanthins transport. In summary, the described method enables high-throughput transporter identification for small molecules in cell factories.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Antiporters , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Sórbico , Biologia Sintética
11.
Microb Cell Fact ; 20(1): 114, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098954

RESUMO

BACKGROUND: The current shift from a fossil-resource based economy to a more sustainable, bio-based economy requires development of alternative production routes based on utilization of biomass for the many chemicals that are currently produced from petroleum. Muconic acid is an attractive platform chemical for the bio-based economy because it can be converted in chemicals with wide industrial applicability, such as adipic and terephthalic acid, and because its two double bonds offer great versatility for chemical modification. RESULTS: We have constructed a yeast cell factory converting glucose and xylose into muconic acid without formation of ethanol. We consecutively eliminated feedback inhibition in the shikimate pathway, inserted the heterologous pathway for muconic acid biosynthesis from 3-dehydroshikimate (DHS) by co-expression of DHS dehydratase from P. anserina, protocatechuic acid (PCA) decarboxylase (PCAD) from K. pneumoniae and oxygen-consuming catechol 1,2-dioxygenase (CDO) from C. albicans, eliminated ethanol production by deletion of the three PDC genes and minimized PCA production by enhancing PCAD overexpression and production of its co-factor. The yeast pitching rate was increased to lower high biomass formation caused by the compulsory aerobic conditions. Maximal titers of 4 g/L, 4.5 g/L and 3.8 g/L muconic acid were reached with glucose, xylose, and a mixture, respectively. The use of an elevated initial sugar level, resulting in muconic acid titers above 2.5 g/L, caused stuck fermentations with incomplete utilization of the sugar. Application of polypropylene glycol 4000 (PPG) as solvent for in situ product removal during the fermentation shows that this is not due to toxicity by the muconic acid produced. CONCLUSIONS: This work has developed an industrial yeast strain able to produce muconic acid from glucose and also with great efficiency from xylose, without any ethanol production, minimal production of PCA and reaching the highest titers in batch fermentation reported up to now. Utilization of higher sugar levels remained conspicuously incomplete. Since this was not due to product inhibition by muconic acid or to loss of viability, an unknown, possibly metabolic bottleneck apparently arises during muconic acid fermentation with high sugar levels and blocks further sugar utilization.


Assuntos
Carboxiliases/metabolismo , Catecol 1,2-Dioxigenase/metabolismo , Hidroliases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Xilose/metabolismo , Carboxiliases/genética , Catecol 1,2-Dioxigenase/genética , Clonagem Molecular , DNA Fúngico , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Hidroliases/genética , Hidroxibenzoatos/metabolismo , Microbiologia Industrial , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Piruvato Descarboxilase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/metabolismo , Ácido Sórbico/isolamento & purificação , Ácido Sórbico/metabolismo
12.
Metab Eng ; 59: 64-75, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31931111

RESUMO

Pseudomonas putida KT2440 has received increasing attention as an important biocatalyst for the conversion of diverse carbon sources to multiple products, including the olefinic diacid, cis,cis-muconic acid (muconate). P. putida has been previously engineered to produce muconate from glucose; however, periplasmic oxidation of glucose causes substantial 2-ketogluconate accumulation, reducing product yield and selectivity. Deletion of the glucose dehydrogenase gene (gcd) prevents 2-ketogluconate accumulation, but dramatically slows growth and muconate production. In this work, we employed adaptive laboratory evolution to improve muconate production in strains incapable of producing 2-ketogluconate. Growth-based selection improved growth, but reduced muconate titer. A new muconate-responsive biosensor was therefore developed to enable muconate-based screening using fluorescence activated cell sorting. Sorted clones demonstrated both improved growth and muconate production. Mutations identified by whole genome resequencing of these isolates indicated that glucose metabolism may be dysregulated in strains lacking gcd. Using this information, we used targeted engineering to recapitulate improvements achieved by evolution. Deletion of the transcriptional repressor gene hexR improved strain growth and increased the muconate production rate, and the impact of this deletion was investigated using transcriptomics. The genes gntZ and gacS were also disrupted in several evolved clones, and deletion of these genes further improved strain growth and muconate production. Together, these targets provide a suite of modifications that improve glucose conversion to muconate by P. putida in the context of gcd deletion. Prior to this work, our engineered strain lacking gcd generated 7.0 g/L muconate at a productivity of 0.07 g/L/h and a 38% yield (mol/mol) in a fed-batch bioreactor. Here, the resulting strain with the deletion of hexR, gntZ, and gacS achieved 22.0 g/L at 0.21 g/L/h and a 35.6% yield (mol/mol) from glucose in similar conditions. These strategies enabled enhanced muconic acid production and may also improve production of other target molecules from glucose in P. putida.


Assuntos
Glucose/metabolismo , Engenharia Metabólica , Pseudomonas putida , Ácido Sórbico/análogos & derivados , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/metabolismo
13.
Biotechnol Bioeng ; 117(5): 1381-1393, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022244

RESUMO

Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2 -eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts.


Assuntos
Adipatos/metabolismo , Reatores Biológicos , Lignina/metabolismo , Reatores Biológicos/economia , Reatores Biológicos/microbiologia , Fermentação , Fenóis/metabolismo , Pseudomonas putida/metabolismo , Pirólise , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo
14.
Yeast ; 36(5): 237-247, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953378

RESUMO

The yeast Saccharomyces cerevisiae is widely used in industrial biotechnology for the production of fuels, chemicals, food ingredients, food and beverages, and pharmaceuticals. To obtain high-performing strains for such bioprocesses, it is often necessary to test tens or even hundreds of metabolic engineering targets, preferably in combinations, to account for synergistic and antagonistic effects. Here, we present a method that allows simultaneous perturbation of multiple selected genetic targets by combining the advantage of CRISPR/Cas9, in vivo recombination, USER assembly and RNA interference. CRISPR/Cas9 introduces a double-strand break in a specific genomic region, where multiexpression constructs combined with the knockdown constructs are simultaneously integrated by homologous recombination. We show the applicability of the method by improving cis,cis-muconic acid production in S. cerevisiae through simultaneous manipulation of several metabolic engineering targets. The method can accelerate metabolic engineering efforts for the construction of future cell factories.


Assuntos
Sistemas CRISPR-Cas , Engenharia Metabólica , Interferência de RNA , Saccharomyces cerevisiae/genética , RNA Interferente Pequeno/genética , Recombinação Genética , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo
15.
Biochem Biophys Res Commun ; 499(2): 279-284, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29571737

RESUMO

Cis,cis-muconic acid (CCM) is a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6. In the current study, the production of CCM was first attempted by introducing a newly developed protocatechuate (PCA) decarboxylase from Corynebacterium glutamicum 13032 to inha103, which completed the biosynthetic pathway therein. To improve CCM productivity, a phosphoenol pyruvate (PEP)-dependent phosphotransferase system (PTS) that consumed the existing glucose was developed, in the form of a strain with a non-PTS that did not consume PEP. To improve glucose uptake, we developed P25 strain, in which iolR (a transcriptional regulator gene) was additionally deleted. Strain P28, a P25 derivative expressing PCA decarboxylase, produced 4.01 g/L of CCM, which was 14% more than that produced by the parental strain. Moreover, strains P29 and P30, with an active pentose phosphate pathway and overexpressing important genes (qsuB) in the metabolic pathway, produced 4.36 and 4.5 g/L of CCM, respectively. Particularly, the yield per glucose in strain P30 was similar to that of the fed-batch culture of Escherichia coli, which has the highest reported yield of 22% (mol/mol). These results are underpinned by the characteristics of the non-PTS with increased PEP availability and a strain with deletion of the iolR gene, which greatly increased glucose uptake.


Assuntos
Corynebacterium glutamicum/enzimologia , Fosfotransferases/metabolismo , Ácido Sórbico/análogos & derivados , Proteínas de Bactérias/metabolismo , Bioengenharia , Carbono/metabolismo , Técnicas de Inativação de Genes , Glucose/metabolismo , Hidroxibenzoatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Sórbico/química , Ácido Sórbico/metabolismo
16.
Metab Eng ; 46: 13-19, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29474840

RESUMO

Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of alternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous hosts for engineered metabolic pathways towards the manufacturing of chemicals. In this work, we engineered Arabidopsis to demonstrate that plants can serve as green factories for the bio-manufacturing of MA. In particular, dual expression of plastid-targeted bacterial salicylate hydroxylase (NahG) and catechol 1,2-dioxygenase (CatA) resulted in the conversion of the endogenous salicylic acid (SA) pool into MA via catechol. Sequential increase of SA derived from the shikimate pathway was achieved by expressing plastid-targeted versions of bacterial salicylate synthase (Irp9) and feedback-resistant 3-deoxy-D-arabino-heptulosonate synthase (AroG). Introducing this SA over-producing strategy into engineered plants that co-express NahG and CatA resulted in a 50-fold increase in MA titers. Considering that MA was easily recovered from senesced plant biomass after harvest, we envision the phytoproduction of MA as a beneficial option to add value to bioenergy crops.


Assuntos
Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Sórbico/análogos & derivados , Arabidopsis/genética , Catecol 1,2-Dioxigenase/genética , Catecol 1,2-Dioxigenase/metabolismo , Liases/biossíntese , Liases/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Salicílico/metabolismo , Ácido Sórbico/metabolismo
17.
Metab Eng ; 47: 279-293, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29548984

RESUMO

Cis,cis-muconic acid (MA) is a chemical that is recognized for its industrial value and is synthetically accessible from aromatic compounds. This feature provides the attractive possibility of producing MA from mixtures of aromatics found in depolymerized lignin, the most underutilized lignocellulosic biopolymer. Based on the metabolic pathway, the catechol (1,2-dihydroxybenzene) node is the central element of this type of production process: (i) all upper catabolic pathways of aromatics converge at catechol as the central intermediate, (ii) catechol itself is frequently generated during lignin pre-processing, and (iii) catechol is directly converted to the target product MA by catechol 1,2-dioxygenase. However, catechol is highly toxic, which poses a challenge for the bio-production of MA. In this study, the soil bacterium Pseudomonas putida KT2440 was upgraded to a fully genome-based host for the production of MA from catechol and upstream aromatics. At the core of the cell factories created was a designed synthetic pathway module, comprising both native catechol 1,2-dioxygenases, catA and catA2, under the control of the Pcat promoter. The pathway module increased catechol tolerance, catechol 1,2-dioxygenase levels, and catechol conversion rates. MA, the formed product, acted as an inducer of the module, triggering continuous expression. Cellular energy level and ATP yield were identified as critical parameters during catechol-based production. The engineered MA-6 strain achieved an MA titer of 64.2 g L-1 from catechol in a fed-batch process, which repeatedly regenerated the energy levels via specific feed pauses. The developed process was successfully transferred to the pilot scale to produce kilograms of MA at 97.9% purity. The MA-9 strain, equipped with a phenol hydroxylase, used phenol to produce MA and additionally converted o-cresol, m-cresol, and p-cresol to specific methylated variants of MA. This strain was used to demonstrate the entire value chain. Following hydrothermal depolymerization of softwood lignin to catechol, phenol and cresols, MA-9 accumulated 13 g L-1 MA and small amounts of 3-methyl MA, which were hydrogenated to adipic acid and its methylated derivative to polymerize nylon from lignin for the first time.


Assuntos
Lignina/metabolismo , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Nylons , Pseudomonas putida , Ácido Sórbico/análogos & derivados , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/metabolismo
18.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934332

RESUMO

Muconic acid (MA) is a chemical building block and precursor to adipic and terephthalic acids used in the production of nylon and polyethylene terephthalate polymer families. Global demand for these important materials, coupled to their dependence on petrochemical resources, provides substantial motivation for the microbial synthesis of MA and its derivatives. In this context, the Saccharomyces cerevisiae yeast shikimate pathway can be sourced as a precursor for the formation of MA. Here we report a novel strategy to balance MA pathway performance with aromatic amino acid prototrophy by destabilizing Aro1 through C-terminal degron tagging. Coupling of a composite MA production pathway to degron-tagged Aro1 in an aro3Δ aro4Δ mutant background led to the accumulation of 5.6 g/liter protocatechuic acid (PCA). However, metabolites downstream of PCA were not detected, despite the inclusion of genes mediating their biosynthesis. Because CEN.PK family strains of S. cerevisiae lack the activity of Pad1, a key enzyme supporting PCA decarboxylase activity, chromosomal expression of intact PAD1 alleviated this bottleneck, resulting in nearly stoichiometric conversion (95%) of PCA to downstream products. In a fed-batch bioreactor, the resulting strain produced 1.2 g/liter MA under prototrophic conditions and 5.1 g/liter MA when supplemented with amino acids, corresponding to a yield of 58 mg/g sugar.IMPORTANCE Previous efforts to engineer a heterologous MA pathway in Saccharomyces cerevisiae have been hindered by a bottleneck at the PCA decarboxylation step and the creation of aromatic amino acid auxotrophy through deleterious manipulation of the pentafunctional Aro1 protein. In light of these studies, this work was undertaken with the central objective of preserving amino acid prototrophy, which we achieved by employing an Aro1 degradation strategy. Moreover, resolution of the key PCA decarboxylase bottleneck, as detailed herein, advances our understanding of yeast MA biosynthesis and will guide future strain engineering efforts. These strategies resulted in the highest titer reported to date for muconic acid produced in yeast. Overall, our study showcases the effectiveness of careful tuning of yeast Aro1 activity and the importance of host-pathway dynamics.


Assuntos
Reatores Biológicos/microbiologia , Carboxiliases/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/metabolismo , Ácido Sórbico/análogos & derivados , Adipatos/metabolismo , Carboxiliases/genética , Ácidos Ftálicos/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Ácido Sórbico/metabolismo
19.
J Sep Sci ; 41(2): 501-508, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29082608

RESUMO

In the current study, a novel technique for extraction and determination of trans,trans-muconic acid, hippuric acid, and mandelic acid was developed by means of ion-pair-based hollow fiber liquid-phase microextraction in the three-phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1-octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high-performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212- to 440-fold, limit of detection of 0.1-7 µg/L, and relative recovery of 87-95% were obtained under the optimized conditions of this method. The relative standard deviation values for within-day and between-day precisions were calculated at 2.9-8.5 and 4.3-11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.


Assuntos
Benzeno/análise , Cromatografia Líquida de Alta Pressão , Estireno/urina , Tolueno/urina , 1-Octanol/química , Hipuratos/química , Humanos , Concentração de Íons de Hidrogênio , Íons , Limite de Detecção , Microextração em Fase Líquida , Ácidos Mandélicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solventes , Ácido Sórbico/análogos & derivados , Ácido Sórbico/química , Espectrofotometria Ultravioleta , Temperatura , Urinálise
20.
Proc Natl Acad Sci U S A ; 112(27): 8266-71, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26111796

RESUMO

Engineering microbial consortia to express complex biosynthetic pathways efficiently for the production of valuable compounds is a promising approach for metabolic engineering and synthetic biology. Here, we report the design, optimization, and scale-up of an Escherichia coli-E. coli coculture that successfully overcomes fundamental microbial production limitations, such as high-level intermediate secretion and low-efficiency sugar mixture utilization. For the production of the important chemical cis,cis-muconic acid, we show that the coculture approach achieves a production yield of 0.35 g/g from a glucose/xylose mixture, which is significantly higher than reported in previous reports. By efficiently producing another compound, 4-hydroxybenzoic acid, we also demonstrate that the approach is generally applicable for biosynthesis of other important industrial products.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ácido Sórbico/análogos & derivados , Biologia Sintética/métodos , Técnicas Bacteriológicas/métodos , Sequência de Bases , Vias Biossintéticas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Microbiologia Industrial/métodos , Dados de Sequência Molecular , Parabenos/metabolismo , Reprodutibilidade dos Testes , Ácido Sórbico/metabolismo , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA