Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 693, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009981

RESUMO

ARs plays a crucial role in plant morphogenesis and development. The limited and inefficient rooting of scions poses a significant challenge to the efficiency and quality of clonal propagation of forest trees in silvicultural practices. Building on previous research conducted by our team, we found that applying IBA at a concentration of 1000 mg/L significantly enhanced mulberry rooting. This study aims to uncover the molecular mechanisms underlying this effect by analyzing RNA sequencing data from mulberry phloem before and after treatment with IBA over time intervals of 10, 20, 30, and 40 days. We identified 5226 DEGs, which were then classified into GO terms and KEGG pathways, showing significant enrichment in hormone signaling processes. Using WGCNA, we identified eight co-expression modules, two of which were significantly correlated with the IBA treatment. Additionally, 18 transcription factors that potentially facilitate ARs formation in mulberry were identified, and an exploratory analysis on the cis-regulatory elements associated with these transcription factors was conducted. The findings of this study provide a comprehensive understanding of the mechanisms of ARs in mulberry and offer theoretical support for the discovery and utilization of exceptional genetic resources within the species.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Morus , Raízes de Plantas , Fatores de Transcrição , Morus/genética , Morus/metabolismo , Morus/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
2.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840042

RESUMO

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Assuntos
Broussonetia , Metalotioneína , Metais Pesados , Filogenia , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína/química , Metais Pesados/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estresse Fisiológico , Sequência de Aminoácidos , Ligação Proteica
3.
Eur J Neurosci ; 59(7): 1833-1847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217338

RESUMO

Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.


Assuntos
Ficus , Doenças Neurodegenerativas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ficus/química , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Fitoquímicos
4.
BMC Plant Biol ; 24(1): 132, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383312

RESUMO

Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.


Assuntos
Morus , Transcriptoma , Morus/genética , Morus/metabolismo , Germinação/genética , Cloreto de Sódio/metabolismo , Sementes/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Oxirredutases/metabolismo , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas
5.
BMC Plant Biol ; 24(1): 61, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253992

RESUMO

BACKGROUND: Leaf coloration in plants, attributed to anthocyanin compounds, plays a crucial role in various physiological functions, and also for pharmaceutical and horticultural uses. However, the molecular mechanisms governing leaf coloration and the physiological significance of anthocyanins in leaves remain poorly understood. RESULTS: In this study, we investigated leaf color variation in two closely related mulberry genotypes, one with purplish-red young leaves (EP) and another with normal leaf color (EW). We integrated transcriptomic and metabolomic approaches to gain insights into the metabolic and genetic basis of purplish-red leaf development in mulberry. Our results revealed that flavonoid biosynthesis, particularly the accumulation of delphinidin-3-O-glucoside, is a key determinant of leaf color. Additionally, the up-regulation of CHS genes and transcription factors, including MYB family members, likely contributes to the increased flavonoid content in purplish-red leaves. CONCLUSION: These findings enhance our understanding of the molecular mechanisms responsible for the purplish coloration observed in mulberry leaves and also offer supporting evidence for the hypothesis that anthocyanins serve a protective function in plant tissues until the processes of light absorption and carbon fixation reach maturity, thereby ensuring a balanced equilibrium between energy capture and utilization.


Assuntos
Morus , Morus/genética , Antocianinas , Genótipo , Flavonoides , Folhas de Planta/genética
6.
Mass Spectrom Rev ; 42(4): 1174-1220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34859471

RESUMO

Aging of wines and spirits in wooden barrels is an industrial process used to stabilize the color, to improve the limpidity and to enrich the sensorial characteristics of the products. In red wines, the oxygen that permeates through the wood staves promotes the oxidization of polyphenols and the formation of new pigments with consequent stabilization of the wine color. Barrel aging of spirits, such as brandy, whisky, rum, and grappa is finalized to enrich their aroma and improve their sensorial characteristics by the contribute of the compounds released by the wood. Oak is the wood type mostly used in making barrels; however, an increasing interest in the use of chestnut, cherry, acacia, and in less extent, ash and mulberry, has been observed in the recent years. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry are the main techniques used to characterize respectively the volatile and polar metabolites released by the wood barrels in the products. In this article are reported the recent advancements in this field.


Assuntos
Vinho , Vinho/análise , Madeira/química , Espectrometria de Massas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polifenóis/análise
7.
Mol Phylogenet Evol ; 197: 108093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740145

RESUMO

Mulberries (genus Morus), belonging to the order Rosales, family Moraceae, are important woody plants due to their economic values in sericulture, as well as for nutritional benefits and medicinal values. However, the taxonomy and phylogeny of Morus, especially for the Asian species, remains challenging due to its wide geographical distribution, morphological plasticity, and interspecific hybridization. To better understand the evolutionary history of Morus, we combined plastomes and a large-scale nuclear gene analyses to investigate their phylogenetic relationships. We assembled the plastomes and screened 211 single-copy nuclear genes from 13 Morus species and related taxa. The plastomes of Morus species were relatively conserved in terms of genome size, gene content, synteny, IR boundary and codon usage. Using nuclear data, our results elucidated identical topologies based on coalescent and concatenation methods. The genus Morus was supported as monophyletic, with M. notabilis as the first diverging lineage and the two North American Morus species, M. microphylla and M. rubra, as sister to the other Asian species. In the Asian Morus species, interspecific relationships were completely resolved. However, cyto-nuclear discordances and gene tree-species tree conflicts were detected in the phylogenies of Morus, with multiple evidences supporting hybridization/introgression as the main cause of discordances between nuclear and plastid phylogenies, while gene tree-species tree conflicts were mainly caused by ILS.


Assuntos
Morus , Filogenia , Morus/genética , Morus/classificação , Núcleo Celular/genética , Genes de Plantas , Genoma de Planta , Evolução Molecular , Análise de Sequência de DNA
8.
J Nutr ; 154(3): 815-825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995914

RESUMO

BACKGROUND: Environmental enteric dysfunction (EED) causes malnutrition in children in low-resource settings. Stable-isotope breath tests have been proposed as noninvasive tests of altered nutrient metabolism and absorption in EED, but uncertainty over interpreting the breath curves has limited their use. The activity of sucrose-isomaltase, the glucosidase enzyme responsible for sucrose hydrolysis, may be reduced in EED. We previously developed a mechanistic model describing the dynamics of the 13C-sucrose breath test (13C-SBT) as a function of underlying metabolic processes. OBJECTIVES: This study aimed to determine which breath test curve dynamics are associated with sucrose hydrolysis and with the transport and metabolism of the fructose and glucose moieties and to propose and evaluate a model-based diagnostic for the loss of activity of sucrase-isomaltase. METHODS: We applied the mechanistic model to 2 sets of exploratory 13C-SBT experiments in healthy adult participants. First, 19 participants received differently labeled sucrose tracers (U-13C fructose, U-13C glucose, and U-13C sucrose) in a crossover study. Second, 16 participants received a sucrose tracer accompanied by 0, 100, and 750 mg of Reducose, a sucrase-isomaltase inhibitor. We evaluated a model-based diagnostic distinguishing between inhibitor concentrations using receiver operator curves, comparing with conventional statistics. RESULTS: Sucrose hydrolysis and the transport and metabolism of the fructose and glucose moieties were reflected in the same mechanistic process. The model distinguishes these processes from the fraction of tracer exhaled and an exponential metabolic process. The model-based diagnostic performed as well as the conventional summary statistics in distinguishing between no and low inhibition [area under the curve (AUC): 0.77 vs. 0.66-0.79] and for low vs. high inhibition (AUC 0.92 vs. 0.91-0.99). CONCLUSIONS: Current summary approaches to interpreting 13C breath test curves may be limited to identifying only gross gut dysfunction. A mechanistic model-based approach improved interpretation of breath test curves characterizing sucrose metabolism.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Sacarose , Criança , Adulto , Humanos , Complexo Sacarase-Isomaltase , Estudos Cross-Over , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Glucose/metabolismo , Oligo-1,6-Glucosidase , Testes Respiratórios , Frutose
9.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698140

RESUMO

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Assuntos
Morus , Filogenia , Doenças das Plantas , Vírus de Plantas , Viroides , Morus/virologia , Viroides/genética , Viroides/isolamento & purificação , Viroides/classificação , Índia , Doenças das Plantas/virologia , RNA Viral/genética , Conformação de Ácido Nucleico
10.
EMBO Rep ; 23(3): e53365, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994476

RESUMO

Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.


Assuntos
Colite , Exossomos , Morus , Nanopartículas , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Modelos Animais de Doenças , Exossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/metabolismo
11.
J Appl Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837228

RESUMO

Mulberry (genus Morus) leaves have long been used as a human food, especially in Asia, and animal feed. More recently, mulberry leaf extracts have been introduced as a convenient way to consume mulberry for non-nutritional functional effects. Reducose® 5% is an Morus alba leaf extract that has been highly purified and standardized to a content of 5 ± 0.5% 1-deoxynojirimycin, a naturally present polyhydroxylated piperidine alkaloid analog of D-glucose. This extract has previously been evaluated in acute and subacute (28-day) oral toxicity studies in which no adverse effects of the test item were observed in mice or rats, respectively. Due to continued and growing interest in the extract in multinational markets, we have now further investigated potential toxic effects in subchronic (90-day) oral toxicity study in male and female Han:WIST rats. The test item was administered at doses of 850, 1700, and 2550 mg/kg bw/day, and did not cause adverse effects in clinical signs, body weight development, clinical pathology, gross pathology, or histopathology in comparison to the vehicle-control group. The no-observed-adverse-effect-level was determined to be 2550 mg/kg bw/day. These results add to the existing body of both preclinical and clinical work relevant to the safety of the extract and of interest to regulators in various global markets.

12.
Chem Biodivers ; : e202400843, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140441

RESUMO

This study aimed to prepare defatted ethanol extract of Abelmoschus esculentus leaves, Morus nigra leaves and Punica granatum peel, to identify the chemical composition of these extracts and to explore their efficacy in counteracting diabetic neuropathy. LC- ESI -MS spectrometry was the hyphenated tool for component identification of these extracts. Behavioral, biochemical, and histopathological investigations were carried out after treatments of diabetic rats. The phenolic contents in the extracts are 16.38, 34.75 and 40.57 mg GAE/g extract regarding A. esculentus leaves, M. nigra leaves and P. granatum peel respectively. Chemodiversity of the phenolic contents was observed from the LC/Mass, where A. esculentus extract contained isoflavonoids and flavanones, M. nigra extract consisted of benzofurans, prenylated flavonoids, stilbenes, and xanthones, and P. granatum extract was rich in ellagitanins, condensed tannins, and anthocyanins. The extracts normalize of blood glucose levels, enhance the explorative behavior of the rats and their response time to thermal pain, restore the oxidant/antioxidant balance, attenuate inflammation, augment brain monoamines levels and modulate MAO-A and Ache enzyme activity. Furthermore, they recovered brain histopathological alterations. Conclusively, this study offers experimental evidence for neuroprotective impact of studied defatted ethanol extracts against diabetic neuropathy via their hypoglycemic effect, antioxidant activity, and anti-inflammatory potential.

13.
Plant Dis ; 108(1): 162-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37552161

RESUMO

Mulberry zonate leaf spot disease (MZLSD) is an important fungal disease of mulberry trees, which seriously affects the productivity and quality of mulberry leaves. MZLSD has been widely reported in sericultural production areas in Guangxi, China, in recent years. In this study, the causal agent of MZLSD was isolated from symptomatic samples and identified as Gonatophragmium mori (Acrospermaceae) based on morphological characterization and molecular analyses using nucleotide sequences of the internal transcribed spacer (ITS) and large subunit ribosomal DNA (LSU rDNA). Pathogenicity tests confirmed that G. mori is the pathogen responsible for MZLSD. Furthermore, we isolated antagonistic endophytic bacteria (AEB) from healthy mulberry leaves. Plate confrontation experiments showed that the lipopeptide crude extracts (LPCE) of three endophytic bacteria can inhibit the growth of G. mori, and the diameter of the antibacterial circle reaches more than 60 mm when their concentration of LPCE is 200 mg/ml. Light microscopy and scanning electron microscopy revealed that LPCE caused drastic changes in mycelial morphology. Fluorescence microscopy and transmission electron microscopy showed that the LPCE-induced apoptosis-like cell death in G. mori hyphae. Finally, based on morphological and molecular features, we identified the three isolates as Bacillus subtilis DS07, B. subtilis DS32, and B. velezensis Q6, respectively. To our knowledge, this is the first time to identify G. mori by combining characterization and molecular analyses, and we provide timely information about the use of biocontrol agents for suppression of G. mori.


Assuntos
Morus , China , Antibacterianos , DNA Ribossômico , Frutas
14.
Plant Dis ; 108(2): 502-512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37647089

RESUMO

Mulberry fruit sclerotiniose is a prevalent disease caused by the fungal species Ciboria shiraiana, C. carunculoides, and Scleromitrula shiraiana of the order Helotiales, and severely affects the production of mulberry. However, these species have only been identified using morphological and rDNA-ITS sequence analyses, and their genetic variation is unclear. To address this, morphological and two-locus (ITS and RPB2) phylogenetic analyses were conducted using culture-dependent and independent methods for 49 samples from 31 orchards across four provinces in China. Illumina MiSeq sequencing was used to assess the fungal communities obtained from fruits varying in disease severity and color from an orchard in Wuhan. Conidial suspensions of C. shiraiana and C. carunculoides isolated from diseased fruits, diseased fruits affected with hypertrophy and pellet sorosis sclerotiniose, and mycelia of Sclerotinia sclerotiorum were determined to be pathogenic to the mulberry cultivar YSD10. However, fruits inoculated with S. sclerotiorum mycelia exhibited nontypical disease symptoms, and mycelia and conidia obtained from C. carunculoides and S. shiraiana strains were not pathogenic. Maximum parsimony and Bayesian analyses using the sequences of the assessed loci indicated species variability with no evidence of geographic specialization. Metagenomic analysis revealed that the diversity of fungal communities was reduced with disease progression. Furthermore, within a single fruit, the presence of two Ciboria spp. was detected. These results provide novel insights into Ciboria spp., revealing the secondary infections caused by conidia in diseased fruits, genetic variations of the pathogens, and the occurrence of coinfection. This improved understanding of fungal pathogens will aid in developing effective disease control strategies.


Assuntos
Coinfecção , Morus , Micobioma , Frutas , Filogenia , Teorema de Bayes , China
15.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612440

RESUMO

Salinity is one of the most serious threats to sustainable agriculture. The Salt Overly Sensitive (SOS) signaling pathway plays an important role in salinity tolerance in plants, and the SOS2 gene plays a critical role in this pathway. Mulberry not only has important economic value but also is an important ecological tree species; however, the roles of the SOS2 gene associated with salt stress have not been reported in mulberry. To gain insight into the response of mulberry to salt stress, SOS2 (designated MulSOS2) was cloned from mulberry (Morus atropurpurea Roxb), and sequence analysis of the amino acids of MulSOS2 showed that it shares some conserved domains with its homologs from other plant species. Our data showed that the MulSOS2 gene was expressed at different levels in different tissues of mulberry, and its expression was induced substantially not only by NaCl but also by ABA. In addition, MulSOS2 was exogenously expressed in Arabidopsis, and the results showed that under salt stress, transgenic MulSOS2 plants accumulated more proline and less malondialdehyde than the wild-type plants and exhibited increased tolerance to salt stress. Moreover, the MulSOS2 gene was transiently overexpressed in mulberry leaves and stably overexpressed in the hairy roots, and similar results were obtained for resistance to salt stress in transgenic mulberry plants. Taken together, the results of this study are helpful to further explore the function of the MulSOS2 gene, which provides a valuable gene for the genetic breeding of salt tolerance in mulberry.


Assuntos
Arabidopsis , Morus , Tolerância ao Sal/genética , Morus/genética , Melhoramento Vegetal , Estresse Salino , Agricultura , Plantas Geneticamente Modificadas
16.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000525

RESUMO

Abiotic stress, especially drought stress, poses a significant threat to terrestrial plant growth, development, and productivity. Although mulberry has great genetic diversity and extensive stress-tolerant traits in agroforestry systems, only a few reports offer preliminary insight into the biochemical responses of mulberry leaves under drought conditions. In this study, we performed a comparative metabolomic and transcriptomic analysis on the "drooping mulberry" (Morus alba var. pendula Dippel) under PEG-6000-simulated drought stress. Our research revealed that drought stress significantly enhanced flavonoid accumulation and upregulated the expression of phenylpropanoid biosynthetic genes. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content were elevated. In vitro enzyme assays and fermentation tests indicated the involvement of flavonol synthase/flavanone 3-hydroxylase (XM_010098126.2) and anthocyanidin 3-O-glucosyltransferase 5 (XM_010101521.2) in the biosynthesis of flavonol aglycones and glycosides, respectively. The recombinant MaF3GT5 protein was found to recognize kaempferol, quercetin, and UDP-glucose as substrates but not 3-/7-O-glucosylated flavonols and UDP-rhamnose. MaF3GT5 is capable of forming 3-O- and 7-O-monoglucoside, but not di-O-glucosides, from kaempferol. This implies its role as a flavonol 3, 7-O-glucosyltransferase. The findings from this study provided insights into the biosynthesis of flavonoids and could have substantial implications for the future diversified utilization of mulberry.


Assuntos
Secas , Flavonoides , Regulação da Expressão Gênica de Plantas , Morus , Folhas de Planta , Proteínas de Plantas , Morus/genética , Morus/metabolismo , Flavonoides/metabolismo , Flavonoides/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Perfilação da Expressão Gênica , Quempferóis/metabolismo , Oxigenases de Função Mista , Oxirredutases
17.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791372

RESUMO

Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.


Assuntos
Morus , Extratos Vegetais , Morus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Folhas de Planta/química
18.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892365

RESUMO

Morus sp. (mulberry) has a long tradition of use as a medicinal treatment, including for cardiovascular disease and type 2 diabetes, being shown to have antioxidant properties and to promote wound healing. Extracellular vesicles (EVs) are sub-micron, membrane-enclosed particles that were first identified in mammalian bodily fluids. EV-like particles have been described in plants (PDVs) and shown to have similar characteristics to mammalian EVs. We hypothesised that some of the health benefits previously attributed to the fruit of Morus sp. could be due to the release of PDVs. We isolated PDVs from Morus nigra and Morus alba via ultracentrifugation and incubated THP-1 monocytes, differentiated THP-1 macrophages, or HMEC-1 endothelial cells with pro-oxidant compounds DMNQ (THP-1) and glucose oxidase (HMEC-1) or lipopolysaccharide (LPS) in the presence of different fractions of mulberry EVs. Mulberry EVs augmented ROS production with DMNQ in THP-1 and caused the downregulation of ROS in HMEC-1. Mulberry EVs increased LPS-induced IL-1ß secretion but reduced CCL2 and TGF-ß secretion in THP-1 macrophages. In scratch wound assays, mulberry EVs inhibited HMEC-1 migration but increased proliferation in both low and high serum conditions, suggesting that they have opposing effects in these two important aspects of wound healing. One of the limitations of plant-derived therapeutics has been overcoming the low bioavailability of isolated compounds. We propose that PDVs could provide the link between physiological dose and therapeutic benefit by protecting plant active compounds in the GIT as well as potentially delivering genetic material or proteins that contribute to previously observed health benefits.


Assuntos
Vesículas Extracelulares , Frutas , Macrófagos , Morus , Espécies Reativas de Oxigênio , Morus/química , Humanos , Vesículas Extracelulares/metabolismo , Frutas/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proliferação de Células/efeitos dos fármacos
19.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612872

RESUMO

Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 µM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Quempferóis , Simulação de Dinâmica Molecular , Farmacologia em Rede , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Frutas , Flavonoides
20.
Prep Biochem Biotechnol ; 54(1): 115-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37652437

RESUMO

Aqueous two-phase extraction (ATPE) has been extensively utilized for the extraction and separation of tiny-molecule substances as a new system (system with short-chain ethanol and inorganic salts). In this study, an innovative method of extracting anthocyanins from mulberry was developed, employing microwave-assisted extraction with ethanol/ammonium sulfate as a biphasic extractant. Response surface methodology (RSM) was utilized to optimize anthocyanin extraction conditions: 39% ethanol (w/w), 13% ammonium sulfate (w/w), and liquid-to-solid ratio of 45:1, microwave duration 3 min, microwave temperature 32 °C, and microwave power 480 Watt (W). High-performance liquid chromatography (HPLC) analysis demonstrated no significant differences in the structure of mulberry anthocyanins before and after MAATPE treatment, furthermore. The extraction behavior of MAATPE was due to hydrogen bonding, according to Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy analysis found that MAATPE damaged the cell structure via a microwave enhancement effect, which was more favorable to anthocyanin dissolution than standard extraction methods. The DPPH free radical scavenging rate of mulberry extracts at 0.5 mg/mL was higher than that of vitamin C (96.4 ± 0.76%), and the ABTS free radical scavenging rate (82.52 ± 2.13%) was close to that of vitamin C, indicating that MAATPE-derived mulberry extracts have good antioxidant activity.


Assuntos
Produtos Biológicos , Morus , Antocianinas/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Micro-Ondas , Frutas/química , Sulfato de Amônio , Água/química , Etanol/análise , Ácido Ascórbico , Radicais Livres/análise , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA