Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956454

RESUMO

BACKGROUND: Multivariate synchronization index (MSI) has been successfully applied for frequency detection in steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems. However, the standard MSI algorithm and its variants cannot simultaneously take full advantage of the time-local structure and the harmonic components in SSVEP signals, which are both crucial for frequency detection performance. To overcome the limitation, we propose a novel filter bank temporally local MSI (FBTMSI) algorithm to further improve SSVEP frequency detection accuracy. The method explicitly utilizes the temporal information of signal for covariance matrix estimation and employs filter bank decomposition to exploits SSVEP-related harmonic components. RESULTS: We employed the cross-validation strategy on the public Benchmark dataset to optimize the parameters and evaluate the performance of the FBTMSI algorithm. Experimental results show that FBTMSI outperforms the standard MSI, temporally local MSI (TMSI) and filter bank driven MSI (FBMSI) algorithms across multiple experimental settings. In the case of data length of one second, the average accuracy of FBTMSI is 9.85% and 3.15% higher than that of the FBMSI and the TMSI, respectively. CONCLUSIONS: The promising results demonstrate the effectiveness of the FBTMSI algorithm for frequency recognition and show its potential in SSVEP-based BCI applications.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados Visuais/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
2.
Cogn Neurodyn ; 10(6): 505-511, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27891199

RESUMO

Multivariate synchronization index (MSI) has been proved to be an efficient method for frequency recognition in SSVEP-BCI systems. It measures the correlation according to the entropy of the normalized eigenvalues of the covariance matrix of multichannel signals. In the MSI method, the estimation of covariance matrix omits the temporally local structure of samples. In this study, a new spatio-temporal method, termed temporally local MSI (TMSI), was presented. This new method explicitly exploits temporally local information in modelling the covariance matrix. In order to evaluate the performance of the TMSI, we performs a comparison between the two methods on the real SSVEP datasets from eleven subjects. The results show that the TMSI outperforms the standard MSI. TMSI benefits from exploiting the temporally local structure of EEG signals, and could be a potential method for robust performance of SSVEP-based BCI.

3.
J Neurosci Methods ; 221: 32-40, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23928153

RESUMO

Multichannel frequency recognition methods are prevalent in SSVEP-BCI systems. These methods increase the convenience of the BCI system for users and require no calibration data. A novel multivariate synchronization index (MSI) for frequency recognition was proposed in this paper. This measure characterized the synchronization between multichannel EEGs and the reference signals, the latter of which were defined according to the stimulus frequency. For the simulation and real data, the proposed method showed better performance than the widely used canonical correlation analysis (CCA) and minimum energy combination (MEC), especially for short data length and a small number of channels. The MSI was also implemented successfully in an online SSVEP-based BCI system, thus further confirming its feasibility for application systems. Because fast and accurate recognition is crucial for practical systems, we recommend MSI as a potential method for frequency recognition in future SSVEP-BCI.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Potenciais Evocados Visuais/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Interface Usuário-Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA