Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.588
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38108453

RESUMO

A growing wealth of data suggest that reactive oxygen species (ROS) signalling might be crucial in conferring embryonic or adult stem cells their specific properties. However, how stem cells control ROS production and scavenging, and how ROS in turn contribute to stemness, remain poorly understood. Using the Xenopus retina as a model system, we first investigated the redox status of retinal stem cells (RSCs). We discovered that they exhibit higher ROS levels compared with progenitors and retinal neurons, and express a set of specific redox genes. We next addressed the question of ROS functional involvement in these cells. Using pharmacological or genetic tools, we demonstrate that inhibition of NADPH oxidase-dependent ROS production increases the proportion of quiescent RSCs. Surprisingly, this is accompanied by an apparent acceleration of the mean division speed within the remaining proliferating pool. Our data further unveil that such impact on RSC cell cycling is achieved by modulation of the Wnt/Hedgehog signalling balance. Altogether, we highlight that RSCs exhibit distinctive redox characteristics and exploit NADPH oxidase signalling to limit quiescence and fine-tune their proliferation rate.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Xenopus laevis/metabolismo , Espécies Reativas de Oxigênio , Proliferação de Células , Proteínas Hedgehog , Retina/metabolismo , Células-Tronco Adultas/metabolismo , NADPH Oxidases/genética , Via de Sinalização Wnt
2.
Semin Immunol ; 67: 101753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060806

RESUMO

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Assuntos
Fusarium , Ceratite , Humanos , Fungos , Córnea/microbiologia , Córnea/patologia , Ceratite/microbiologia , Ceratite/patologia , Fusarium/fisiologia , Neutrófilos
3.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805284

RESUMO

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Assuntos
Microscopia Crioeletrônica , NADPH Oxidase 2 , NADPH Oxidases , Fagócitos , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/química , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/química , Ligação Proteica , Sítios de Ligação , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Moleculares , Espécies Reativas de Oxigênio/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(3): e2209184120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626553

RESUMO

Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.


Assuntos
Monócitos , NADPH Oxidases , Quinases Associadas a rho , Humanos , Aminoácidos , Monócitos/metabolismo , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio , Quinases Associadas a rho/metabolismo
5.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432630

RESUMO

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Assuntos
NADPH Oxidase 2 , Família de Proteínas da Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sítios de Ligação
6.
J Biol Chem ; : 107943, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481598

RESUMO

The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.

7.
Plant J ; 118(4): 1119-1135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308390

RESUMO

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Assuntos
Homeostase , Peróxido de Hidrogênio , NADPH Oxidases , Oxirredução , Raízes de Plantas , Potássio , Ácido Salicílico , Tolerância ao Sal , Sódio , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Potássio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Regulação da Expressão Gênica de Plantas , Rhizophoraceae/fisiologia , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Mol Microbiol ; 121(1): 69-84, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38017607

RESUMO

Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.


Assuntos
Dictyostelium , Humanos , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Pseudomonas aeruginosa/metabolismo , Fagossomos/metabolismo , Neutrófilos , Antibacterianos/metabolismo , Bactérias
9.
Eur J Immunol ; : e2451029, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873882

RESUMO

Cellular metabolism is a key determinant of immune cell function. Here we found that CD14+ monocytes from Sub-Saharan Africans produce higher levels of IL-10 following TLR-4 stimulation and are bioenergetically distinct from monocytes from Europeans. Through metabolomic profiling, we identified the higher IL-10 production to be driven by increased baseline production of NADPH oxidase-dependent reactive oxygen species, supported by enhanced pentose phosphate pathway activity. Together, these data indicate that NADPH oxidase-derived ROS is a metabolic checkpoint in monocytes that governs their inflammatory profile and uncovers a metabolic basis for immunological differences across geographically distinct populations.

10.
Genes Cells ; 29(10): 921-930, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126279

RESUMO

The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells. Impairment of N-glycosylation of DUOXA1 results in mistargeting of DUOX1 to the basolateral membrane. Similar to DUOX1 complexed with the glycosylation-defective DUOXA1, the naturally non-glycosylated oxidase NOX5, which forms a homo-oligomer, is targeted basolaterally. On the other hand, a mutant DUOXA2 deficient in N-glycosylation is less stable than the wild-type protein but still capable of recruiting DUOX2 to the apical membrane, whereas DUOX2 is missorted to the basolateral membrane when paired with DUOXA1. These findings indicate that DUOXA2 is crucial but its N-glycosylation is dispensable for DUOX2 apical recruitment; instead, its C-terminal region seems to be involved. Thus, apical sorting of DUOX1 and DUOX2 is likely regulated in a distinct manner by their respective partners DUOXA1 and DUOXA2.


Assuntos
Membrana Celular , Oxidases Duais , Células Epiteliais , NADPH Oxidases , Oxidases Duais/metabolismo , Oxidases Duais/genética , Membrana Celular/metabolismo , Cães , Células Epiteliais/metabolismo , Animais , Células Madin Darby de Rim Canino , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Humanos , Glicosilação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transporte Proteico
11.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387281

RESUMO

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Associados a Tumor , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Proliferação de Células , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL22/farmacologia , Quimiocina CCL22/uso terapêutico
12.
Artigo em Inglês | MEDLINE | ID: mdl-39405473

RESUMO

Infection of lung endothelial cells with pneumococci activates the superoxide-generating enzyme NADPH oxidase 2 (NOX2), involving the pneumococcal virulence factor pneumolysin (PLY). Excessive NOX2 activity disturbs capillary barriers, but its global inhibition can impair bactericidal phagocyte activity during pneumococcal pneumonia. Depletion of the α subunit of the epithelial sodium channel (ENaC) in pulmonary endothelial cells increases expression and PMA-induced activity of NOX2. Direct ENaC activation by TIP peptide improves capillary barrier function -measured by electrical cell substrate impedance sensing in endothelial monolayers and by Evans Blue Dye incorporation in mouse lungs- following infection with pneumococci. PLY-induced hyperpermeability in HL-MVEC monolayers is abrogated by both NOX2 inhibitor gp91dstat and TIP peptide. Endothelial NOX2 expression is assessed by increased surface membrane presence of phosphorylated p47phox subunit (Western blotting) in vitro and by co-localization of CD31 and gp91phox in mouse lung slices using DuoLink, whereas NOX2-generated superoxide is measured by chemiluminescence. TIP peptide blunts PMA-induced NOX2 activity in cells expressing ENaC-α, but not in neutrophils, which lack ENaC. Conditional endothelial ENaC-α KO (enENaC-α KO) mice develop increased capillary leak upon i.t. instillation with PLY or pneumococci, compared to wild type (wt) animals. TIP peptide diminishes capillary leak in Sp-infected wt mice, without significantly increasing lung bacterial load. Lung slices from Sp-infected enENaC-α KO mice have a significantly increased endothelial NOX2 expression, as compared to infected CRE mice. In conclusion, endothelial ENaC may represent a novel therapeutic target to reduce NOX2-mediated oxidative stress and capillary leak in ARDS, without impairing host defense.

13.
J Biol Chem ; 299(8): 105018, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423301

RESUMO

Cell surface pattern recognition receptors sense invading pathogens by binding microbial or endogenous elicitors to activate plant immunity. These responses are under tight control to avoid excessive or untimely activation of cellular responses, which may otherwise be detrimental to host cells. How this fine-tuning is accomplished is an area of active study. We previously described a suppressor screen that identified Arabidopsis thaliana mutants with regained immune signaling in the immunodeficient genetic background bak1-5, which we named modifier of bak1-5 (mob) mutants. Here, we report that bak1-5 mob7 mutant restores elicitor-induced signaling. Using a combination of map-based cloning and whole-genome resequencing, we identified MOB7 as conserved binding of eIF4E1 (CBE1), a plant-specific protein that interacts with the highly conserved eukaryotic translation initiation factor eIF4E1. Our data demonstrate that CBE1 regulates the accumulation of respiratory burst oxidase homolog D, the NADPH oxidase responsible for elicitor-induced apoplastic reactive oxygen species production. Furthermore, several mRNA decapping and translation initiation factors colocalize with CBE1 and similarly regulate immune signaling. This study thus identifies a novel regulator of immune signaling and provides new insights into reactive oxygen species regulation, potentially through translational control, during plant stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a RNA , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Proteínas de Ligação a RNA/metabolismo
14.
Am J Physiol Renal Physiol ; 326(2): F202-F218, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059296

RESUMO

Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.


Assuntos
Angiotensina II , Transportadores de Sulfato , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Aldosterona/farmacologia , Aldosterona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , Transportadores de Sulfato/genética , Superóxidos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Am J Physiol Endocrinol Metab ; 327(1): E1-E12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690939

RESUMO

High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature of cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. Human mesenteric vascular endothelial cells (HMECs) and human umbilical vein endothelial cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-wk-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. Testo increased mRNA and protein levels of NOX4 in HMECs and HUVECs. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cell migration, which was exacerbated by GLX351322. These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.NEW & NOTEWORTHY By inducing ROS formation, high levels of testosterone play a major role in the pathogenesis of cardiovascular disease. NOXs are the major sources of ROS in the vasculature of cardiovascular diseases. Herein, we describe a novel compensatory mechanism by showing that NOX4 is a protective oxidant enzyme and counterbalances the deleterious effects of testosterone in endothelial cells by modulating hydrogen peroxide formation.


Assuntos
Movimento Celular , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , NADPH Oxidase 4 , Testosterona , Animais , Humanos , Masculino , Camundongos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo
16.
J Neurochem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193789

RESUMO

We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.

17.
J Neurochem ; 168(5): 899-909, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299375

RESUMO

Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.


Assuntos
Metabolismo Energético , Ácido Glutâmico , Neurônios , Animais , Células Cultivadas , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ácido Glutâmico/metabolismo , Ratos , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Glucose/deficiência , Actinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , NADPH Oxidases/metabolismo , Acetofenonas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Cinurênico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Sprague-Dawley
18.
Mol Microbiol ; 119(1): 74-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416195

RESUMO

Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.


Assuntos
Dictyostelium , Animais , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Fagossomos/metabolismo , Klebsiella pneumoniae , Proteínas de Membrana/metabolismo , Bactérias/metabolismo , Mamíferos
19.
EMBO J ; 39(19): e103530, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001475

RESUMO

Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post-mitotic cells such as cardiomyocytes and neurons. Here, we show that stress-induced upregulation of the ROS-generating protein Nox4 at the ER-mitochondria contact sites (MAMs) is a pro-survival mechanism that inhibits calcium transfer through InsP3 receptors (InsP3 R). Nox4 mediates redox signaling at the MAM of stressed cells to augment Akt-dependent phosphorylation of InsP3 R, thereby inhibiting calcium flux and mPT-dependent necrosis. In hearts subjected to ischemia-reperfusion, Nox4 limits infarct size through this mechanism. These results uncover a hitherto unrecognized stress pathway, whereby a ROS-generating protein mediates pro-survival effects through spatially confined signaling at the MAM to regulate ER to mitochondria calcium flux and triggering of the mPT.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Animais , Sobrevivência Celular , Receptores de Inositol 1,4,5-Trifosfato/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , NADPH Oxidase 4/genética , Estresse Oxidativo , Ratos
20.
Eur J Immunol ; 53(9): e2250271, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366283

RESUMO

Endosomal toll-like receptors (TLRs) must be translocated from the endoplasmic reticulum (ER) to the endosome and proteolytically cleaved within the endosome before they can induce cellular signals. As ligands for these TLRs are also liberated from apoptotic or necrotic cells, this process is controlled by several mechanisms which shall ensure that there is no inadvertent activation. We have shown previously that antiphospholipid antibodies induce endosomal NADPH-oxidase (NOX) followed by the translocation of TLR7/8 to the endosome. We show now that endosomal NOX is required for the rapid translocation of TLR3, TLR7/8, and TLR9. Deficiency of gp91phox, the catalytic subunit of NOX2, or inhibition of endosomal NOX by the chloride channel blocker niflumic acid both prevent immediate (i.e., within 30 min) translocation of these TLRs as shown by confocal laser scanning microscopy. Under these conditions, the induction of mRNA synthesis for TNF-α and secretion of TNF-α is delayed by approx. 6-9 h. However, maximal expression of TNF-α mRNA or secretion of TNF-α is not significantly reduced. In conclusion, these data add NOX2 as another component involved in the orchestration of cellular responses to ligands of endosomal TLRs.


Assuntos
NADPH Oxidases , Fator de Necrose Tumoral alfa , NADPH Oxidases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor 7 Toll-Like/genética , Ligantes , Receptores Toll-Like/metabolismo , Endossomos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA