Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(7): 1872-1886.e24, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30449621

RESUMO

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


Assuntos
Citidina/análogos & derivados , Acetiltransferase N-Terminal E/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Acetilação , Citidina/genética , Citidina/metabolismo , Células HeLa , Humanos , Acetiltransferase N-Terminal E/genética , Acetiltransferases N-Terminal , RNA Mensageiro/genética
2.
Mol Cell ; 84(8): 1611-1625.e3, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640896

RESUMO

We recently reported the distribution of N4-acetylcytidine (ac4C) in HeLa mRNA at base resolution through chemical reduction and the induction of C:T mismatches in sequencing (RedaC:T-seq). Our results contradicted an earlier report from Schwartz and colleagues utilizing a similar method termed ac4C-seq. Here, we revisit both datasets and reaffirm our findings. Through RedaC:T-seq reanalysis, we establish a low basal error rate at unmodified nucleotides that is not skewed to any specific mismatch type and a prominent increase in C:T substitutions as the dominant mismatch type in both treated wild-type replicates, with a high degree of reproducibility across replicates. In contrast, through ac4C-seq reanalysis, we uncover significant data quality issues including insufficient depth, with one wild-type replicate yielding 2.7 million reads, inconsistencies in reduction efficiencies between replicates, and an overall increase in mismatches involving thymine that could obscure ac4C detection. These analyses bolster the detection of ac4C in HeLa mRNA through RedaC:T-seq.


Assuntos
Citidina/análogos & derivados , Nucleotídeos , Humanos , Reprodutibilidade dos Testes , RNA Mensageiro/genética
3.
Mol Cell ; 84(8): 1601-1610.e2, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640895

RESUMO

Cytidine acetylation (ac4C) of RNA is a post-transcriptional modification catalyzed by Nat10. Recently, an approach termed RedaC:T was employed to map ac4C in human mRNA, relying on detection of C>T mutations in WT but not in Nat10-KO cells. RedaC:T suggested widespread ac4C presence. Here, we reanalyze RedaC:T data. We find that mismatch signatures are not reproducible, as C>T mismatches are nearly exclusively present in only one of two biological replicates. Furthermore, all mismatch types-not only C>T-are highly enriched in WT samples, inconsistent with an acetylation signature. We demonstrate that the originally observed enrichment in mutations in one of the WT samples is due to its low complexity, resulting in the technical amplification of all classes of mismatch counts. Removal of duplicate reads abolishes the skewed mismatch patterns. These analyses account for the irreproducible mismatch patterns across samples while failing to find evidence for acetylation of RedaC:T sites.


Assuntos
Citidina , RNA , Humanos , RNA Mensageiro/genética , Acetilação , Mutação
4.
Mol Cell ; 82(15): 2797-2814.e11, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35679869

RESUMO

mRNA function is influenced by modifications that modulate canonical nucleobase behavior. We show that a single modification mediates distinct impacts on mRNA translation in a position-dependent manner. Although cytidine acetylation (ac4C) within protein-coding sequences stimulates translation, ac4C within 5' UTRs impacts protein synthesis at the level of initiation. 5' UTR acetylation promotes initiation at upstream sequences, competitively inhibiting annotated start codons. Acetylation further directly impedes initiation at optimal AUG contexts: ac4C within AUG-flanking Kozak sequences reduced initiation in base-resolved transcriptome-wide HeLa results and in vitro utilizing substrates with site-specific ac4C incorporation. Cryo-EM of mammalian 80S initiation complexes revealed that ac4C in the -1 position adjacent to an AUG start codon disrupts an interaction between C and hypermodified t6A at nucleotide 37 of the initiator tRNA. These findings demonstrate the impact of RNA modifications on nucleobase function at a molecular level and introduce mRNA acetylation as a factor regulating translation in a location-specific manner.


Assuntos
Citidina , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Animais , Códon de Iniciação , Citidina/análogos & derivados , Citidina/genética , Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Mol Cell ; 75(6): 1256-1269.e7, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31378463

RESUMO

Eukaryotic ribosome biogenesis involves RNA folding and processing that depend on assembly factors and small nucleolar RNAs (snoRNAs). The 90S (SSU-processome) is the earliest pre-ribosome structurally analyzed, which was suggested to assemble stepwise along the growing pre-rRNA from 5' > 3', but this directionality may not be accurate. Here, by analyzing the structure of a series of 90S assembly intermediates from Chaetomium thermophilum, we discover a reverse order of 18S rRNA subdomain incorporation. Large parts of the 18S rRNA 3' and central domains assemble first into the 90S before the 5' domain is integrated. This final incorporation depends on a contact between a heterotrimer Enp2-Bfr2-Lcp5 recruited to the flexible 5' domain and Kre33, which reconstitutes the Kre33-Enp-Brf2-Lcp5 module on the compacted 90S. Keeping the 5' domain temporarily segregated from the 90S scaffold could provide extra time to complete the multifaceted 5' domain folding, which depends on a distinct set of snoRNAs and processing factors.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Conformação de Ácido Nucleico , RNA Fúngico/metabolismo , RNA Ribossômico 18S/metabolismo , Ribossomos/metabolismo , Chaetomium/genética , Proteínas Fúngicas/genética , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Ribossomos/genética
6.
Proc Natl Acad Sci U S A ; 121(36): e2410564121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190359

RESUMO

Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.


Assuntos
Disfunção Cognitiva , RNA Mensageiro , Encefalopatia Associada a Sepse , Animais , Masculino , Camundongos , Acetilação , Acetiltransferases/metabolismo , Acetiltransferases/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Giro Denteado/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Sepse/metabolismo , Sepse/complicações , Sepse/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/genética , Receptores de GABA-B
7.
RNA ; 30(7): 938-953, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697668

RESUMO

The functional analysis of epitranscriptomic modifications in RNA is constrained by a lack of methods that accurately capture their locations and levels. We previously demonstrated that the RNA modification N4-acetylcytidine (ac4C) can be mapped at base resolution through sodium borohydride reduction to tetrahydroacetylcytidine (tetrahydro-ac4C), followed by cDNA synthesis to misincorporate adenosine opposite reduced ac4C sites, culminating in C:T mismatches at acetylated cytidines (RedaC:T). However, this process is relatively inefficient, resulting in <20% C:T mismatches at a fully modified ac4C site in 18S rRNA. Considering that ac4C locations in other substrates including mRNA are unlikely to reach full penetrance, this method is not ideal for comprehensive mapping. Here, we introduce "RetraC:T" (reduction to tetrahydro-ac4C and reverse transcription with amino-dATP to induce C:T mismatches) as a method with enhanced ability to detect ac4C in cellular RNA. In brief, RNA is reduced through NaBH4 or the closely related reagent sodium cyanoborohydride (NaCNBH3) followed by cDNA synthesis in the presence of a modified DNA nucleotide, 2-amino-dATP, that preferentially binds to tetrahydro-ac4C. Incorporation of the modified dNTP substantially improved C:T mismatch rates, reaching stoichiometric detection of ac4C in 18S rRNA. Importantly, 2-amino-dATP did not result in truncated cDNA products nor increase mismatches at other locations. Thus, modified dNTPs are introduced as a new addition to the toolbox for detecting ac4C at base resolution.


Assuntos
Citidina , DNA Complementar , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , Citidina/genética , DNA Complementar/genética , RNA/genética , RNA/química , RNA/metabolismo , Humanos , Boroidretos/química , Oxirredução , Transcrição Reversa , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo
8.
RNA ; 30(5): 583-594, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531654

RESUMO

In recent years, concerted efforts to map and understand epitranscriptomic modifications in mRNA have unveiled new complexities in the regulation of gene expression. These studies cumulatively point to diverse functions in mRNA metabolism, spanning pre-mRNA processing, mRNA degradation, and translation. However, this emerging landscape is not without its intricacies and sources of discrepancies. Disparities in detection methodologies, divergent interpretations of functional outcomes, and the complex nature of biological systems across different cell types pose significant challenges. With a focus of N4-acetylcytidine (ac4C), this review endeavors to unravel conflicting narratives by examining the technological, biological, and methodological factors that have contributed to discrepancies and thwarted research progress. Our goal is to mitigate detection inconsistencies and establish a unified model to elucidate the contribution of ac4C to mRNA metabolism and cellular equilibrium.


Assuntos
Citidina/análogos & derivados , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA/genética
9.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196516

RESUMO

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a RNA , Acetilação , Alelos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
J Virol ; 98(1): e0135023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169284

RESUMO

Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.


Assuntos
Infecções por Alphavirus , Antígenos de Superfície , Proteínas Ligadas por GPI , Acetiltransferases N-Terminal , Sindbis virus , Replicação Viral , Humanos , Infecções por Alphavirus/genética , Antígenos de Superfície/genética , Citidina/análogos & derivados , Proteínas Ligadas por GPI/genética , RNA Mensageiro/genética , Sindbis virus/fisiologia , Linhagem Celular , Acetiltransferases N-Terminal/genética , Estabilidade de RNA
11.
Cell Mol Life Sci ; 81(1): 73, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308713

RESUMO

N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Citidina/genética , Neoplasias/genética
12.
J Neurosci ; 43(17): 3009-3027, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36898834

RESUMO

RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Masculino , Camundongos , Acetiltransferases/metabolismo , Citidina/farmacologia , Citidina/genética , Citidina/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/etiologia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , RNA , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo
13.
Cancer Sci ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038928

RESUMO

Sorafenib, an anticancer drug, has been shown to induce ferroptosis in cancer cells. However, resistance to sorafenib greatly limits its therapeutic efficacy, and the exact mechanism of resistance is not fully understood. This study investigated the role of N-Acetyltransferase 10 (NAT10) in influencing the anticancer activity of sorafenib in nasopharyngeal carcinoma (NPC) and its molecular mechanism. NAT10 expression was significantly upregulated in NPC. Mechanistically, NAT10 promotes proteins of solute carrier family 7 member 11 (SLC7A11) expression through ac4C acetylation, inhibiting sorafenib-induced ferroptosis in NPC cells. The combined application of sorafenib and the NAT10 inhibitor remodelin significantly inhibits SLC7A11 expression and promotes ferroptosis in NPC cells. In vivo knockout of NAT10 inhibited the growth of sorafenib-resistant NPC. Our findings suggest that NAT10 inhibition might be a promising therapeutic approach to enhance the anticancer activity of sorafenib.

14.
Mol Med ; 30(1): 13, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243170

RESUMO

BACKGROUND: PD-1/PD-L1 play a crucial role as immune checkpoint inhibitors in various types of cancer. Although our previous study revealed that NPM1 was a novel transcriptional regulator of PD-L1 and stimulated the transcription of PD-L1, the underlying regulatory mechanism remains incompletely characterized. METHODS: Various human cancer cell lines were used to validate the role of NPM1 in regulating the transcription of PD-L1. The acetyltransferase NAT10 was identified as a facilitator of NPM1 acetylation by coimmunoprecipitation and mass spectrometry. The potential application of combined NAT10 inhibitor and anti-CTLA4 treatment was evaluated by an animal model. RESULTS: We demonstrated that NPM1 enhanced the transcription of PD-L1 in various types of cancer, and the acetylation of NPM1 played a vital role in this process. In particular, NAT10 facilitated the acetylation of NPM1, leading to enhanced transcription and increased expression of PD-L1. Moreover, our findings demonstrated that Remodelin, a compound that inhibits NAT10, effectively reduced NPM1 acetylation, leading to a subsequent decrease in PD-L1 expression. In vivo experiments indicated that Remodelin combined with anti-CTLA-4 therapy had a superior therapeutic effect compared with either treatment alone. Ultimately, we verified that the expression of NAT10 exhibited a positive correlation with the expression of PD-L1 in various types of tumors, serving as an indicator of unfavorable prognosis. CONCLUSION: This study suggests that the NAT10/NPM1 axis is a promising therapeutic target in malignant tumors.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Tiazóis , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Hidrazonas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Acetiltransferases N-Terminal
15.
Mol Med ; 30(1): 140, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251905

RESUMO

BACKGROUND: Sepsis-induced pulmonary injury (SPI) is a common complication of sepsis with a high rate of mortality. N4-acetylcytidine (ac4C) is mediated by the ac4C "writer", N-acetyltransferase (NAT)10, to regulate the stabilization of mRNA. This study aimed to investigate the role of NAT10 in SPI and the underlying mechanism. METHODS: Twenty-three acute respiratory distress syndrome (ARDS) patients and 27 non-ARDS volunteers were recruited. A sepsis rat model was established. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of NAT10 and transferrin receptor (TFRC). Cell viability was detected by cell counting kit-8. The levels of Fe2+, glutathione, and malondialdehyde were assessed by commercial kits. Lipid reactive oxygen species production was measured by flow cytometric analysis. Western blot was used to detect ferroptosis-related protein levels. Haematoxylin & eosin staining was performed to observe the pulmonary pathological symptoms. RESULTS: The results showed that NAT10 was increased in ARDS patients and lipopolysaccharide-treated human lung microvascular endothelial cell line-5a (HULEC-5a) cells. NAT10 inhibition increased cell viability and decreased ferroptosis in HULEC-5a cells. TFRC was a downstream regulatory target of NAT10-mediated ac4C acetylation. Overexpression of TFRC decreased cell viability and promoted ferroptosis. In in vivo study, NAT10 inhibition alleviated SPI. CONCLUSION: NAT10-mediated ac4C acetylation of TFRC aggravated SPI through promoting ferroptosis.


Assuntos
Ferroptose , Receptores da Transferrina , Sepse , Sepse/metabolismo , Sepse/complicações , Sepse/etiologia , Acetilação , Animais , Humanos , Ratos , Masculino , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Feminino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Modelos Animais de Doenças , Acetiltransferases/metabolismo , Acetiltransferases/genética , Pessoa de Meia-Idade , Antígenos CD/metabolismo , Antígenos CD/genética , Citidina/análogos & derivados , Citidina/farmacologia , Linhagem Celular , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Ratos Sprague-Dawley , Sobrevivência Celular
16.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233839

RESUMO

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Assuntos
Citidina/análogos & derivados , Osteossarcoma , Fosfofrutoquinases , Humanos , Lactato Desidrogenase 5/metabolismo , Fosfofrutoquinases/metabolismo , Acetilação , RNA/metabolismo , Glicólise/genética , Osteossarcoma/patologia , Fosfofrutoquinase-1 Muscular/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetiltransferases N-Terminal/metabolismo
17.
Exp Cell Res ; 428(2): 113620, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156457

RESUMO

Although the patient's survival time in various cancers has significantly increased in recent decades, the overall 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC) has remained virtually unchanged due to rapid progression and metastasis. While N-acetyltransferase 10 (NAT10) has been identified as a regulator of mRNA acetylation in many malignancies, its role in PDAC remains unclear. Here, we found that NAT10 mRNA and protein levels were upregulated in PDAC tissues. Increased NAT10 protein expression was significantly correlated with poor prognosis in PDAC patients. Through our experiments, we demonstrated that NAT10 acted as an oncogene to promote PDAC tumorigenesis and metastasis in vitro and in vivo. Mechanistically, NAT10 exerts its oncogenic effects by promoting mRNA stability of receptor tyrosine kinase AXL in an ac4C-dependent manner leading to increased AXL expression and further promoting PDAC cell proliferation and metastasis. Together, our findings highlight the critical of NAT10 in PDAC progression and reveal a novel epigenetic mechanism by which modified mRNA acetylation promotes PDAC metastasis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/genética , RNA Mensageiro/genética , Acetiltransferases N-Terminal , Neoplasias Pancreáticas
18.
Dig Dis Sci ; 69(9): 3261-3275, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990269

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10), the only RNA cytosine acetyltransferase known in humans, contributes to cancer tumorigenesis and progression. This study aims to investigate the effect of NAT10 on the malignant biological properties of gastric cancer (GC) and its underlying mechanism. METHODS: The expression and prognostic significance of NAT10 in GC were analyzed using The Cancer Genome Atlas (TCGA) and Sun Yat-sen University (SYSU) cohorts. The influence of NAT10 on the malignant biological behaviors of GC was detected by Cell Counting Kit-8 (CCK-8) assay, plate colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU), Transwell migration and invasion assays, scratch wound assay, flow cytometric analysis, and animal studies. The overall level of N4 acetylcytidine (ac4C) in GC was detected by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The downstream signal pathways of NAT10 were analyzed by Gene Set Enrichment Analysis (GSEA) and verified by Western blot (WB) and immunofluorescence (IF). RESULTS: The significant upregulation of NAT10 expression in GC was associated with a poor prognosis. The knockdown of NAT10 markedly suppressed GC cell proliferation, migration, invasion, and cell cycle progression. Downregulating NAT10 reduced ac4C levels and inhibited AKT phosphorylation and epithelial-mesenchymal transition (EMT) in GC. CONCLUSIONS: NAT10 functions as an oncogene and may provide a new therapeutic target in GC.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular Tumoral , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/metabolismo , Movimento Celular , Proliferação de Células , Masculino , Camundongos , Regulação para Cima , Feminino , Camundongos Nus , Prognóstico , Acetiltransferases N-Terminal
19.
Cell Mol Biol Lett ; 29(1): 25, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331765

RESUMO

BACKGROUND: Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown. This study aimed to elucidate the role of circMAST1 in CCa. METHODS: CircRNAs related to CCa progression were identified via a circRNA microarray. The relationship between circMAST1 levels and clinicopathological features of CCa was evaluated using the clinical specimens and data of 131 patients with CCa. In vivo and in vitro experiments, including xenograft animal models, cell proliferation assay, transwell assay, RNA pull-down assay, whole-transcriptome sequencing, RIP assay, and RNA-FISH, were performed to investigate the effects of circMAST1 on the malignant behavior of CCa. RESULTS: CircMAST1 was significantly downregulated in CCa tissues, and low expression of CircMAST1 was correlated with a poor prognosis. Moreover, our results demonstrated that circMAST1 inhibited tumor growth and lymph node metastasis of CCa. Mechanistically, circMAST1 competitively sequestered N-acetyltransferase 10 (NAT10) and hindered Yes-associated protein (YAP) mRNA ac4C modification to promote its degradation and inhibit tumor progression in CCa. CONCLUSIONS: CircMAST1 plays a major suppressive role in the tumor growth and metastasis of CCa. In particular, circMAST1 can serve as a potential biomarker and novel target for CCa.


Assuntos
Citidina , RNA Circular , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Linhagem Celular Tumoral , Citidina/análogos & derivados , RNA/genética , RNA Circular/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/genética
20.
Oral Dis ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287502

RESUMO

OBJECTIVE: To explore the biological function and mechanisms of CEBPB and NAT10-mediated N4-acetylcytidine (ac4c) modification in salivary adenoid cystic carcinoma (SACC). MATERIALS AND METHODS: CEBPB and NAT10 were knocked down in SACC-LM cells by siRNA transfection and overexpressed in SACC-83 cells by plasmid transfection. Malignant phenotypes were evaluated using CCK-8, Transwell migration and colony formation assays. Real-time PCR, western blotting, ChIP and acRIP were used to investigate the molecular mechanisms involved. RESULTS: We found that CEBPB was highly expressed in SACC tissues and correlated with lung metastasis and unfavourable prognosis. Gain- and loss-of-function experiments revealed that CEBPB promoted SACC malignant phenotypes. Mechanistically, CEBPB exerted its oncogenic effect by binding to the vimentin gene promoter region to enhance its expression. Moreover, NAT10-mediated ac4c modification led to stabilization and overexpression of CEBPB in SACC cells. We also found that NAT10, the only known human enzyme responsible for ac4C modification, promoted SACC cell migration, proliferation and colony formation. Moreover, CEBPB overexpression restored the inhibitory effect of NAT10 knockdown on malignant phenotypes. CONCLUSIONS: Our study reveals the critical role of the newly identified NAT10/CEBPB/vimentin axis in SACC malignant progression, and the findings may be applied to improve treatment for SACC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA