Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trop Med Int Health ; 29(8): 752-755, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946064

RESUMO

Noma, or Cancrum oris, is a severe and rapidly progressing gangrenous infection that primarily affects the face. It is most commonly observed in children living in impoverished conditions, especially in sub-Saharan Africa. Rapid diagnosis and early management are crucial to prevent devastating consequences, such as functional limitations and serious psychological repercussions. Herein, we present a case of an 8-month-old child affected by noma, whose positive outcome is attributed to the prompt recognition by healthcare personnel. In our patient, the condition was likely related to malnutrition and the preceding extraction of a deciduous tooth reported by the mother and probably associated with a traditional Ugandan practice called Ebiino. This is the second case reported in Uganda, and given the limited healthcare access in most of the country, coupled with the high prevalence of poverty and other predisposing factors, it becomes evident that the incidence of noma is underestimated. Noma, as a neglected disease, requires greater awareness within communities and among healthcare professionals. A collective effort is needed to significantly reduce risk factors and promote prevention of this life-threatening disease.


Assuntos
Noma , Humanos , Uganda , Lactente , Masculino , Feminino , Fatores de Risco
2.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894435

RESUMO

This article proposes a distributed intelligent Coordinated Multi-Point Non-Orthogonal Multiple-Access (CoMP-NOMA) collaborative transmission model with the assistance of reconfigurable intelligent surfaces (RISs) to address the issues of poor communication quality, low fairness, and high system power consumption for edge users in multi-cellular networks. By analyzing the interaction mechanisms and influencing factors among RIS signal enhancement, NOMA user scheduling, and multi-point collaborative transmission, the model establishes RIS-enhanced edge user grouping and coordinates NOMA user clusters based on this. In the multi-cell RIS-assisted JT-CoMP NOMA downlink transmission, joint optimization of the power allocation (PA), user clustering (UC), and RIS phase-shift matrix design (PS) poses a challenging Mixed-Integer Non-Linear Programming (MINLP) problem. The original problem is decomposed by optimizing the formulas into joint sub-problems of PA, UC, and PA and PS, and solved using an alternating optimization approach. Simulation results demonstrate that the proposed scheme effectively reduces the system's power consumption while significantly improving the system's throughput and rates.

3.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894439

RESUMO

Sixth-generation (6G) wireless networks demand a more efficient implementation of non-orthogonal multiple access (NOMA) schemes for severe multipath fading environments to serve multiple users. Using non-orthogonal multiple access (NOMA) schemes in IoT 6G networks is a promising solution to allow multiple users to share the same spectral and temporal resource, increasing spectral efficiency and improving the network's capacity. In this work, we have evaluated the performance of a novel progressive pattern interleaver (PPI) employed to distinguish the users in interleaved division multiple access (IDMA) schemes, suggested by 3GPP guidelines as a NOMA scheme, with two multi-carrier modulation schemes known as single-carrier frequency-division multiple access (SC-FDMA) and orthogonal frequency-division multiplexing (OFDM), resulting in SC-FDMA-IDMA and OFDM-IDMA schemes. Both schemes are multi-carrier schemes with orthogonal sub-carriers to deal against inter-symbol interference (ISI) and orthogonal interleavers for the simultaneous access of multiple users. It has been suggested through simulation outcomes that PPI performance is adequate with SC-FDMA-IDMA and OFDM-IDMA schemes in terms of bit error rate (BER) under multipath channel conditions. Moreover, regarding bandwidth requirement and the implementation complexity of the transmitted interleaver structure, PPI is superior to the conventional random interleaver (RI).

4.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257430

RESUMO

Reconfigurable intelligent surfaces (RIS) are expected to bring about a revolutionary transformation in vehicular networks, thus paving the way for a future characterized by connected and automated vehicles (CAV). An RIS is a planar structure comprising many passive elements that can dynamically manipulate electromagnetic waves to enhance wireless communication by reflecting, refracting, and focusing signals in a programmable manner. RIS exhibits substantial potential for improving vehicle-to-everything (V2X) communication through various means, including coverage enhancement, interference mitigation, improving signal strength, and providing additional layers of privacy and security. This article presents a comprehensive survey that explores the emerging opportunities arising from the integration of RIS into vehicular networks. To examine the convergence of RIS and V2X communications, the survey adopted a holistic approach, thus highlighting the potential benefits and challenges of this combination. In this study, we examined several applications of RIS-aided V2X communication. Subsequently, we delve into the fundamental emerging technologies that are expected to empower vehicular networks, encompassing mobile edge computing (MEC), non-orthogonal multiple access (NOMA), millimeter-wave communication (mmWave), Artificial Intelligence (AI), and visible light communication (VLC). Finally, to stimulate further research in this domain, we emphasize noteworthy research challenges and potential avenues for future exploration.

5.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066068

RESUMO

Enhancing spectral efficiency in non-line-of-sight (NLoS) environments is essential as 5G networks evolve, surpassing 4G systems with high information rates and minimal interference. Instead of relying on traditional Orthogonal Multiple Access (OMA) systems to tackle issues caused by NLoS, advanced wireless networks adopt innovative models like Non-Orthogonal Multiple Access (NOMA), cooperative relaying, Multiple Input Multiple Output (MIMO), and intelligent reflective surfaces (IRSs). Therefore, this study comprehensively analyzes these techniques for their potential to improve communication reliability and spectral efficiency in NLoS scenarios. Specifically, it encompasses an analysis of cooperative relaying strategies for their potential to improve reliability and spectral efficiency in NLoS environments through user cooperation. It also examines various MIMO configurations to address NLoS challenges via spatial diversity. Additionally, it investigates IRS settings, which can alter signal paths to enhance coverage and reduce interference and analyze the role of Unmanned Aerial Vehicles (UAVs) in establishing flexible communication infrastructure in difficult environments. This paper also surveys effective energy harvesting (EH) strategies that can be integrated with NOMA for efficient and reliable energy-communication networks. Our findings show that incorporating these technologies with NOMA not only enhances connectivity and spectral efficiency but also promotes a stable and environmentally sustainable data communication system.

6.
Sensors (Basel) ; 24(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338893

RESUMO

For the future of sixth-generation (6G) wireless communication, simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) technology is emerging as a promising solution to achieve lower power transmission and flawless coverage. To facilitate the performance analysis of RIS-assisted networks, the statistics of the sum of double random variables, i.e., the sum of the products of two random variables of the same distribution type, become vitally necessary. This paper applies the statistics of the sum of double random variables in the performance analysis of an integrated power beacon (PB) energy-harvesting (EH)-based NOMA-assisted STAR-RIS network to improve its outage probability (OP), ergodic rate, and average symbol error rate. Furthermore, the impact of imperfect successive interference cancellation (ipSIC) on system performance is also analyzed. The analysis provides the closed-form expressions of the OP and ergodic rate derived for both imperfect and perfect SIC (pSIC) cases. All analyses are supported by extensive simulation results, which help recommend optimized system parameters, including the time-switching factor, the number of reflecting elements, and the power allocation coefficients, to minimize the OP. Finally, the results demonstrate the superiority of the proposed framework compared to conventional NOMA and OMA systems.

7.
Entropy (Basel) ; 26(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785670

RESUMO

In this paper, we consider a downlink non-orthogonal multiple access (NOMA) system over Nakagami-m channels. The single-antenna base station serves two single-antenna NOMA users based on statistical channel state information (CSI). We derive the closed-form expression of the exact outage probability under a given decoding order, and we also deduce the asymptotic outage probability and diversity order in a high-SNR regime. Then, we analyze all the possible power allocation ranges and theoretically prove the optimal power allocation range under the corresponding decoding order. The demarcation points of the optimal power allocation ranges are affected by target data rates and total power, without an effect from the CSI. In particular, the values of the demarcation points are proportional to the total power. Furthermore, we formulate a joint decoding order and power allocation optimization problem to maximize the sum throughput, which is solved by efficiently searching in our obtained optimal power allocation ranges. Finally, Monte Carlo simulations are conducted to confirm the accuracy of our derived exact outage probability. Numerical results show the accuracy of our deduced demarcation points of the optimal power allocation ranges. And the optimal decoding order is not constant at different total transmit power levels.

8.
Entropy (Basel) ; 26(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248189

RESUMO

We propose a secure user pairing (UP) and power allocation (PA) strategy for a downlink Non-Orthogonal Multiple Access (NOMA) system when there exists an external eavesdropper. The secure transmission of data through the downlink is constructed to optimize both UP and PA. This optimization aims to maximize the achievable sum secrecy rate (ASSR) while adhering to a limit on the rate for each user. However, this poses a challenge as it involves a mixed integer nonlinear programming (MINLP) problem, which cannot be efficiently solved through direct search methods due to its complexity. To handle this gracefully, we first divide the original problem into two smaller issues, i.e., an optimal PA problem for two paired users and an optimal UP problem. Next, we obtain the closed-form optimal solution for PA between two users and UP in a simplified NOMA system involving four users. Finally, the result is extended to a general 2K-user NOMA system. The proposed UP and PA method satisfies the minimum rate constraints with an optimal ASSR as shown theoretically and as validated by numerical simulations. According to the results, the proposed method outperforms random UP and that in a standard OMA system in terms of the ASSR and the average ASSR. It is also interesting to find that increasing the number of user pairs will bring more performance gain in terms of the average ASSR.

9.
J Equine Sci ; 35(2): 29-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962514

RESUMO

Plasma or serum amino acids are used to evaluate nutritional status and metabolic disorders. In this study, we aimed to set reference values of serum amino acid concentrations in the Noma horse, a Japanese native horse. Thirty-one horses were classified into six age groups: neonatal foal (0-4 days), foal (0.5-1 years), youth (5 years), middle age (10 years), old (15 years), and extra-old (>20 years). Horses >5 years of age were analyzed together as the adult group. In the adult horses, there were no significant differences among the serum amino acid concentrations of each age group. The foal group had higher concentrations of alanine, aspartic acid, glutamic acid, α-aminoadipic acid, and 3-methyl-histidine than the adult group. The neonatal foal group had higher serum concentrations of phenylalanine, lysine, alanine, proline, aspartic acid, glutamic acid, ß-alanine, and ß-amino-iso-butyric acid and lower tryptophan concentrations and Fischer's ratios than the adult group. The neonatal foal group had higher ß-amino-iso-butyric acid concentrations and lower tryptophan and 3-methyl-histidine concentrations than the foal group. Therefore, reference values might be set separately in neonatal foals, foals, and adult horses. The data for the serum amino acid concentrations can be used for health care through physiological and pathological evaluations in Noma horses.

10.
Sensors (Basel) ; 23(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960708

RESUMO

In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system (PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks (DQN) algorithm will be developed and incorporated into the NOMA system so that this developed DQN model can be employed to estimate the channel coefficients for each user device in NOMA system. The developed DQN scheme will be structured as a simplified approach to efficiently predict the channel parameters for each user in order to maximize the downlink sum rates for all users in the system. In order to approximate the channel parameters for each user device, this proposed DQN approach is first initialized using random channel statistics, and then the proposed DQN model will be dynamically updated based on the interaction with the environment. The predicted channel parameters will be utilized at the receiver side to recover the desired data. Furthermore, this work inspects how the channel estimation process based on the simplified DQN algorithm and the power allocation policy, can both be integrated for the purpose of multiuser detection in the examined NOMA system. Simulation results, based on several performance metrics, have demonstrated that the proposed simplified DQN algorithm can be a competitive algorithm for channel parameters estimation when compared to different benchmark schemes for channel estimation processes such as deep neural network (DNN) based long-short term memory (LSTM), RL based Q algorithm, and channel estimation scheme based on minimum mean square error (MMSE) procedure.

11.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772422

RESUMO

In this study, the influence of adopting Reinforcement Learning (RL) to predict the channel parameters for user devices in a Power Domain Multi-Input Single-Output Non-Orthogonal Multiple Access (MISO-NOMA) system is inspected. In the channel prediction-based RL approach, the Q-learning algorithm is developed and incorporated into the NOMA system so that the developed Q-model can be employed to predict the channel coefficients for every user device. The purpose of adopting the developed Q-learning procedure is to maximize the received downlink sum-rate and decrease the estimation loss. To satisfy this aim, the developed Q-algorithm is initialized using different channel statistics and then the algorithm is updated based on the interaction with the environment in order to approximate the channel coefficients for each device. The predicted parameters are utilized at the receiver side to recover the desired data. Furthermore, based on maximizing the sum-rate of the examined user devices, the power factors for each user can be deduced analytically to allocate the optimal power factor for every user device in the system. In addition, this work inspects how the channel prediction based on the developed Q-learning model, and the power allocation policy, can both be incorporated for the purpose of multiuser recognition in the examined MISO-NOMA system. Simulation results, based on several performance metrics, have demonstrated that the developed Q-learning algorithm can be a competitive algorithm for channel estimation when compared to different benchmark schemes such as deep learning-based long short-term memory (LSTM), RL based actor-critic algorithm, RL based state-action-reward-state-action (SARSA) algorithm, and standard channel estimation scheme based on minimum mean square error procedure.

12.
Sensors (Basel) ; 23(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37514719

RESUMO

With the development of the Internet of Things (IoT), the number of devices will also increase tremendously. However, we need more wireless communication resources. It has been shown in the literature that non-orthogonal multiple access (NOMA) offers high multiplexing gains due to the simultaneous transfer of signals, and massive multiple-input-multiple-outputs (mMIMOs) offer high spectrum efficiency due to the high antenna gain and high multiplexing gains. Therefore, a downlink mMIMO NOMA cooperative system is considered in this paper. The users at the cell edge in 5G cellular system generally suffer from poor signal quality as they are far away from the BS and expend high battery power to decode the signals superimposed through NOMA. Thus, this paper uses a cooperative relay system and proposes the mMIMO NOMA double-mode model to reduce battery expenditure and increase the cell edge user's energy efficiency and sum rate. In the mMIMO NOMA double-mode model, two modes of operation are defined. Depending on the relay's battery level, these modes are chosen to utilize the system's energy efficiency. Comprehensive numerical results show the improvement in the proposed system's average sum rate and average energy efficiency compared with a conventional system. In a cooperative NOMA system, the base station (BS) transmits a signal to a relay, and the relay forwards the signal to a cluster of users. This cluster formation depends on the user positions and geographical restrictions concerning the relay equipment. Therefore, it is vital to form user clusters for efficient and simultaneous transmission. This paper also presents a novel method for efficient cluster formation.

13.
Sensors (Basel) ; 23(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631599

RESUMO

In this paper, we investigate a user pairing problem in power domain non-orthogonal multiple access (NOMA) scheme-aided satellite networks. In the considered scenario, different satellite applications are assumed with various delay quality-of-service (QoS) requirements, and the concept of effective capacity is employed to characterize the effect of delay QoS limitations on achieved performance. Based on this, our objective was to select users to form a NOMA user pair and utilize resource efficiently. To this end, a power allocation coefficient was firstly obtained by ensuring that the achieved capacity of users with sensitive delay QoS requirements was not less than that achieved with an orthogonal multiple access (OMA) scheme. Then, considering that user selection in a delay-limited NOMA-based satellite network is intractable and non-convex, a deep reinforcement learning (DRL) algorithm was employed for dynamic user selection. Specifically, channel conditions and delay QoS requirements of users were carefully selected as state, and a DRL algorithm was used to search for the optimal user who could achieve the maximum performance with the power allocation factor, to pair with the delay QoS-sensitive user to form a NOMA user pair for each state. Simulation results are provided to demonstrate that the proposed DRL-based user selection scheme can output the optimal action in each time slot and, thus, provide superior performance than that achieved with a random selection strategy and OMA scheme.

14.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766050

RESUMO

Beamspace MIMO-NOMA is an effective way to improve spectral efficiency. This paper focuses on a downlink non-orthogonal multiple access (NOMA) transmission scheme for a beamspace multiple-input multiple-output (MIMO) system. To increase the sum rate, we jointly optimize precoding and power allocation, which presents a non-convex problem. To solve this difficulty, we employ an alternating algorithm to optimize the precoding and power allocation. Regarding the precoding subproblem, we demonstrate that the original optimization problem can be transformed into an unconstrained optimization problem. Drawing inspiration from fraction programming (FP), we reconstruct the problem and derive a closed-form expression of the optimization variable. In addition, we effectively reduce the complexity of precoding by utilizing Neumann series expansion (NSE). For the power allocation subproblem, we adopt a dynamic power allocation scheme that considers both the intra-beam power optimization and the inter-beam power optimization. Simulation results show that the energy efficiency of the proposed beamspace MIMO-NOMA is significantly better than other conventional schemes.

15.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005452

RESUMO

In this paper, in order to reduce the energy consumption and time of data transmission, the non-orthogonal multiple access (NOMA) and mobile edge caching technologies are jointly considered in mobile edge computing (MEC) networks. As for the cache-assisted vehicular NOMA-MEC networks, a problem of minimizing the energy consumed by vehicles (mobile devices, MDs) is formulated under time and resource constraints, which jointly optimize the computing resource allocation, subchannel selection, device association, offloading and caching decisions. To solve the formulated problem, we develop an effective joint computation offloading and task-caching algorithm based on the twin-delayed deep deterministic policy gradient (TD3) algorithm. Such a TD3-based offloading (TD3O) algorithm includes a designed action transformation (AT) algorithm used for transforming continuous action space into a discrete one. In addition, to solve the formulated problem in a non-iterative manner, an effective heuristic algorithm (HA) is also designed. As for the designed algorithms, we provide some detailed analyses of computation complexity and convergence, and give some meaningful insights through simulation. Simulation results show that the TD3O algorithm could achieve lower local energy consumption than several benchmark algorithms, and HA could achieve lower consumption than the completely offloading algorithm and local execution algorithm.

16.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617128

RESUMO

Outage probability (OP) and potential throughput (PT) of multihop full-duplex (FD) nonorthogonal multiple access (NOMA) systems are addressed in the present paper. More precisely, two metrics are derived in the closed-form expressions under the impact of both imperfect successive interference cancellation (SIC) and imperfect self-interference cancellation. Moreover, to model short transmission distance from the transmit and receive antennae at relays, the near-field path-loss is taken into consideration. Additionally, the impact of the total transmit power on the performance of these metrics is rigorously derived. Furthermore, the mathematical framework of the baseline systems is provided too. Computer-based simulations via the Monte Carlo method are given to verify the accuracy of the proposed framework, confirm our findings, and highlight the benefits of the proposed systems compared with the baseline one.

17.
Sensors (Basel) ; 23(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300046

RESUMO

The localization of agents for collaborative tasks is crucial to maintain the quality of the communication link for successful data transmission between the base station and agents. Power-domain Non-Orthogonal Multiple Access (P-NOMA) is an emerging multiplexing technique that enables the base station to accumulate signals for different agents using the same time-frequency channel. The environment information such as distance from the base station is required at the base station to calculate communication channel gains and allocate suitable signal power to each agent. The accurate estimate of the position for power allocation of P-NOMA in a dynamic environment is challenging due to the changing location of the end-agent and shadowing. In this paper, we take advantage of the two-way Visible Light Communication (VLC) link to (1) estimate the position of the end-agent in a real-time indoor environment based on the signal power received at the base station using machine learning algorithms and (2) allocate resources using the Simplified Gain Ratio Power Allocation (S-GRPA) scheme with the look-up table method. In addition, we use the Euclidean Distance Matrix (EDM) to estimate the location of the end-agent whose signal was lost due to shadowing. The simulation results show that the machine learning algorithm is able to provide an accuracy of 0.19 m and allocate power to the agent.


Assuntos
Noma , Humanos , Algoritmos , Comunicação , Luz , Aprendizado de Máquina
18.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420704

RESUMO

Internet of Things (IoT) systems cooperative with unmanned aerial vehicles (UAVs) have been put into use for more than ten years, from transportation to military surveillance, and they have been shown to be worthy of inclusion in the next wireless protocols. Therefore, this paper studies user clustering and the fixed power allocation approach by placing multi-antenna UAV-mounted relays for extended coverage areas and achieving improved performance for IoT devices. In particular, the system enables UAV-mounted relays with multiple antennas together with non-orthogonal multiple access (NOMA) to provide a potential way to enhance transmission reliability. We presented two cases of multi-antenna UAVs such as maximum ratio transmission and the best selection to highlight the benefits of the antenna-selections approach with low-cost design. In addition, the base station managed its IoT devices in practical scenarios with and without direct links. For two cases, we derive closed-form expressions of outage probability (OP) and closed-form approximation ergodic capacity (EC) generated for both devices in the main scenario. The outage and ergodic capacity performances in some scenarios are compared to confirm the benefits of the considered system. The number of antennas was found to have a crucial impact on the performances. The simulation results show that the OP for both users strongly decreases when the signal-to-noise ratio (SNR), number of antennas, and fading severity factor of Nakagami-m fading increase. The proposed scheme outperforms the orthogonal multiple access (OMA) scheme in outage performance for two users. The analytical results match Monte Carlo simulations to confirm the exactness of the derived expressions.


Assuntos
Internet das Coisas , Militares , Humanos , Reprodutibilidade dos Testes , Análise por Conglomerados , Simulação por Computador
19.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139532

RESUMO

Multi-input multi-output and non-orthogonal multiple access (MIMO-NOMA) Internet-of-Things (IoT) systems can improve channel capacity and spectrum efficiency distinctly to support real-time applications. Age of information (AoI) plays a crucial role in real-time applications as it determines the timeliness of the extracted information. In MIMO-NOMA IoT systems, the base station (BS) determines the sample collection commands and allocates the transmit power for each IoT device. Each device determines whether to sample data according to the sample collection commands and adopts the allocated power to transmit the sampled data to the BS over the MIMO-NOMA channel. Afterwards, the BS employs the successive interference cancellation (SIC) technique to decode the signal of the data transmitted by each device. The sample collection commands and power allocation may affect the AoI and energy consumption of the system. Optimizing the sample collection commands and power allocation is essential for minimizing both AoI and energy consumption in MIMO-NOMA IoT systems. In this paper, we propose the optimal power allocation to achieve it based on deep reinforcement learning (DRL). Simulations have demonstrated that the optimal power allocation effectively achieves lower AoI and energy consumption compared to other algorithms. Overall, the reward is reduced by 6.44% and 11.78% compared the to GA algorithm and random algorithm, respectively.

20.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050509

RESUMO

In vehicular edge computing (VEC), some tasks can be processed either locally or on the mobile edge computing (MEC) server at a base station (BS) or a nearby vehicle. In fact, tasks are offloaded or not, based on the status of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. In this paper, device-to-device (D2D)-based V2V communication and multiple-input multiple-output and nonorthogonal multiple access (MIMO-NOMA)-based V2I communication are considered. In actual communication scenarios, the channel conditions for MIMO-NOMA-based V2I communication are uncertain, and the task arrival is random, leading to a highly complex environment for VEC systems. To solve this problem, we propose a power allocation scheme based on decentralized deep reinforcement learning (DRL). Since the action space is continuous, we employ the deep deterministic policy gradient (DDPG) algorithm to obtain the optimal policy. Extensive experiments demonstrate that our proposed approach with DRL and DDPG outperforms existing greedy strategies in terms of power consumption and reward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA