Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 709-722.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482084

RESUMO

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.


Assuntos
Células-Tronco Adultas/metabolismo , Cálcio/metabolismo , Ritmo Circadiano , Espaço Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Citosol/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Melatonina/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Optogenética , Transdução de Sinais/efeitos dos fármacos , Triptaminas/farmacologia
2.
EMBO Rep ; 24(12): e57268, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987220

RESUMO

Intermittent fasting (IF) is a promising strategy to counteract ageing shown to increase the number of adult-born neurons in the dentate gyrus of mice. However, it is unclear which steps of the adult neurogenesis process are regulated by IF. The number of adult neural stem cells (NSCs) decreases with age in an activation-dependent manner and, to counteract this loss, adult NSCs are found in a quiescent state which ensures their long-term maintenance. We aimed to determine if and how IF affects adult NSCs in the hippocampus. To identify the effects of every-other-day IF on NSCs and all following steps in the neurogenic lineage, we combined fasting with lineage tracing and label retention assays. We show here that IF does not affect NSC activation or maintenance and, that contrary to previous reports, IF does not increase neurogenesis. The same results are obtained regardless of strain, sex, diet length, tamoxifen administration or new-born neuron identification method. Our data suggest that NSCs maintain homeostasis upon IF and that this intervention is not a reliable strategy to increase adult neurogenesis.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Camundongos , Animais , Jejum Intermitente , Neurogênese , Neurônios , Hipocampo , Células-Tronco Adultas/fisiologia
3.
J Cell Mol Med ; 28(7): e18205, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506089

RESUMO

Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/ß-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.


Assuntos
Células-Tronco Neurais , Tretinoína , Tretinoína/farmacologia , Tretinoína/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
4.
Neuroimage ; 293: 120623, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670442

RESUMO

High-order interactions are required across brain regions to accomplish specific cognitive functions. These functional interdependencies are reflected by synergistic information that can be obtained by combining the information from all the sources considered and redundant information (i.e., common information provided by all the sources). However, electroencephalogram (EEG) functional connectivity is limited to pairwise interactions thereby precluding the estimation of high-order interactions. In this multicentric study, we used measures of synergistic and redundant information to study in parallel the high-order interactions between five EEG electrodes during three non-ordinary states of consciousness (NSCs): Rajyoga meditation (RM), hypnosis, and auto-induced cognitive trance (AICT). We analyzed EEG data from 22 long-term Rajyoga meditators, nine volunteers undergoing hypnosis, and 21 practitioners of AICT. We here report the within-group changes in synergy and redundancy for each NSC in comparison with their respective baseline. During RM, synergy increased at the whole brain level in the delta and theta bands. Redundancy decreased in frontal, right central, and posterior electrodes in delta, and frontal, central, and posterior electrodes in beta1 and beta2 bands. During hypnosis, synergy decreased in mid-frontal, temporal, and mid-centro-parietal electrodes in the delta band. The decrease was also observed in the beta2 band in the left frontal and right parietal electrodes. During AICT, synergy decreased in delta and theta bands in left-frontal, right-frontocentral, and posterior electrodes. The decrease was also observed at the whole brain level in the alpha band. However, redundancy changes during hypnosis and AICT were not significant. The subjective reports of absorption and dissociation during hypnosis and AICT, as well as the mystical experience questionnaires during AICT, showed no correlation with the high-order measures. The proposed study is the first exploratory attempt to utilize the concepts of synergy and redundancy in NSCs. The differences in synergy and redundancy during different NSCs warrant further studies to relate the extracted measures with the phenomenology of the NSCs.


Assuntos
Estado de Consciência , Eletroencefalografia , Hipnose , Meditação , Humanos , Masculino , Feminino , Adulto , Estado de Consciência/fisiologia , Pessoa de Meia-Idade , Encéfalo/fisiologia , Adulto Jovem
5.
Glob Chang Biol ; 30(8): e17442, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39082863

RESUMO

The effects of climate change on marine ecosystems are causing cascading impacts on livelihood, food security, and culture through fisheries. Such impacts interact and exacerbate the effects of overfishing on marine social-ecological systems, complicating the rebuilding of ecosystems to achieve desirable and sustainable ocean futures. Developing effective pathways for ecosystem rebuilding requires consideration of the co-benefits and trade-offs between ecological and social dimensions and between fishing sectors. However, the effects of intensifying climate change on such co-benefits or trade-offs are yet to be well understood, particularly in regions where ecosystem rebuilding is urgently needed. We applied a numerical optimization routine to define the scope for improvement toward the Pareto-frontier for ecological robustness and economic benefits of the northern South China Sea (NSCS) and the East China Sea (ECS) ecosystems. These two ecosystems were used to represent over-exploited low- and mid-latitude systems, respectively, and the optimization aimed to improve their status through fisheries management. We find that the ECS ecosystem has the possibility of increasing the economic benefits generated by the fisheries it supports under climate change by 2050 while increasing the uncertainty of achieving biodiversity objectives. Nevertheless, climate change is projected to reduce the scope to restore ecosystem structures and the potential economic benefits in the NSCS ecosystem. This study highlights the contrasting impacts of climate change on the co-benefits/trade-offs in ecosystem rebuilding and the benefits obtainable by different fishing sectors even in neighboring ecosystems. We conclude that consideration at the nexus of climate-biodiversity-fisheries is a key to developing effective ecosystem rebuilding plan.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Oceanos e Mares , China , Biodiversidade , Modelos Teóricos
6.
Stem Cells ; 41(4): 384-399, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36648299

RESUMO

Although electroacupuncture (EA) stimulation is a widely used therapy for chronic pain and comorbid psychiatric disorders, its long-term effects on chronic neuropathic pain-induced depression and the underlying mechanisms remain elusive. In the present study, we found that EA stimulation was able to restore adult neurogenesis in the ventral dentate gyrus (DG), by both increasing neuronal differentiation and restoring the normal morphology of newborn dendrites, in mice with spared nerve injury surgery. By ablating the Nestin+ neural stem cells (NSCs) via diphtheria toxin fragment A expression, we further proved that neurogenesis in the ventral DG was crucial to the long-term, but not the immediate antidepressant effect of EA, nor was it associated with nociception. Furthermore, we found that the restoration of neurogenesis was dependent on Tet1-mediated epigenetic modification upon EA treatment. Tet1 could bind to the promoter of the Prox1 gene, thus catalyzing its demethylation and facilitating its expression, which finally contributed to the restoration of neurogenesis and amelioration of depression-like behaviors induced by chronic neuropathic pain. Thus, we conclude that EA stimulation restores inhibited Tet1 expression in hippocampal NSCs of mice with chronic neuropathic pain, and increased Tet1 expression ameliorates hypermethylation of Prox1 and restores normal adult neurogenesis in the ventral DG, which contributes to the long-term antidepressant effect of EA.


Assuntos
Eletroacupuntura , Neuralgia , Camundongos , Animais , Depressão/complicações , Depressão/terapia , Neurogênese , Hipocampo/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
7.
J Cell Physiol ; 238(1): 137-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350183

RESUMO

Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Células-Tronco Neurais , Ondas Ultrassônicas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Células Cultivadas , Células-Tronco Neurais/citologia , Neurônios/citologia , Transdução de Sinais
8.
Eur J Neurosci ; 58(9): 4084-4101, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37753701

RESUMO

With the ageing of society's population, neurodegenerative diseases have become an important factor affecting the quality of life and mortality in the elderly. Since its physiopathological processes are complex and the authorized medications have recently been shown to have several adverse effects, the development of safe and efficient medications is urgently needed. In this study, we looked at how ginsenoside Rg1 works to postpone neural stem cell ageing and brain ageing, giving it a solid scientific foundation for use as a therapeutic therapy for neurodegenerative diseases.


Assuntos
Ginsenosídeos , Células-Tronco Neurais , Doenças Neurodegenerativas , Humanos , Idoso , Galactose/metabolismo , Galactose/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Qualidade de Vida , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/metabolismo
9.
Glob Chang Biol ; 29(7): 1854-1869, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583374

RESUMO

Woody plant species store nonstructural carbohydrates (NSCs) for many functions. While known to buffer against fluctuations in photosynthetic supply, such as at night, NSC stores are also thought to buffer against environmental extremes, such as drought or freezing temperatures by serving as either back-up energy reserves or osmolytes. However, a clear picture of how NSCs are shaped by climate is still lacking. Here, we update and leverage a unique global database of seasonal NSC storage measurements to examine whether maximum total NSC stores and the amount of soluble sugars are associated with clinal patterns in low temperatures or aridity, indicating they may confer a benefit under freezing or drought conditions. We examine patterns using the average climate at each study site and the unique climatic conditions at the time and place in which the sample was taken. Altogether, our results support the idea that NSC stores act as critical osmolytes. Soluble Sugars increase with both colder and drier conditions in aboveground tissues, indicating they can plastically increase a plants' tolerance of cold or arid conditions. However, maximum total NSCs increased, rather than decreased, with average site temperature and had no relationship to average site aridity. This result suggests that the total amount of NSC a plant stores may be more strongly determined by its capacity to assimilate carbon than by environmental stress. Thus, NSCs are unlikely to serve as reservoir of energy. This study is the most comprehensive synthesis to date of global NSC variation in relation to climate and supports the idea that NSC stores likely serve as buffers against environmental stress. By clarifying their role in cold and drought tolerance, we improve our ability to predict plant response to environment.


Assuntos
Carboidratos , Fotossíntese , Açúcares , Madeira , Plantas , Metabolismo dos Carboidratos , Árvores/química
10.
Stem Cells ; 40(3): 303-317, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35304896

RESUMO

Toll-like receptors (TLRs) make a crucial contribution to the innate immune response. TLR5 was expressed in embryoid body derived from mouse embryonic stem cells (mESCs) and ßIII-tubulin-positive cells under all-trans retinoic acid-treated condition. TLR5 was upregulated during neural differentiation from mESCs and augmented the neural differentiation of mESCs via nuclear factor-κB and interleukin 6/CREB pathways. Besides, TLR5 was expressed in SOX2- or doublecortin-positive cells in the subgranular zone of the hippocampal dentate gyrus where adult neurogenesis occurs. TLR5 inhibited the proliferation of adult hippocampal neural stem cells (NSCs) by regulating the cell cycle and facilitated the neural differentiation from the adult hippocampal NSCs via JNK pathway. Also, TLR5 deficiency impaired fear memory performance in mice. Our data suggest that TLR5 is a crucial modulator of neurogenesis from mESCs and adult hippocampal NSCs in mice and represents a new therapeutic target in neurological disorders related to cognitive function.


Assuntos
Células-Tronco Neurais , Receptor 5 Toll-Like , Animais , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Receptor 5 Toll-Like/metabolismo
11.
Cell Mol Neurobiol ; 43(5): 2337-2358, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36547781

RESUMO

Human neural stem cells (NSCs) are self-renewing, multipotent cells of the central nervous system (CNS). They are characterized by their ability to differentiate into a range of cells, including oligodendrocytes (OLs), neurons, and astrocytes, depending on exogenous stimuli. An efficient and easy directional differentiation method was developed for obtaining large quantities of high-quality of human OL progenitor cells (OPCs) and OLs from NSCs. RNA sequencing, immunofluorescence staining, flow cytometry, western blot, label-free proteomic sequencing, and qPCR were performed in OL lines differentiated from NSC lines. The changes in the positive rate of typical proteins were analyzed expressed by NSCs, neurons, astrocytes, OPCs, and OLs. We assessed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of differentially expressed (DE) messenger RNAs (mRNAs) related to the differentiation of NSCs and the maturation of OLs. The percentage of NSCs differentiated into neurons, astrocytes, and OLs was 82.13%, 80.19%, and 90.15%, respectively. We found that nestin, PAX6, Musashi, and vimentin were highly expressed in NSCs; PDGFR-α, A2B5, NG2, OLIG2, SOX10, and NKX2-2 were highly expressed in OPCs; and CNP, GALC, PLP1, and MBP were highly expressed in OLs. RNA sequencing, western blot and qPCR revealed that ERBB4 and SORL1 gradually increased during NSC-OL differentiation. In conclusion, NSCs can differentiate into neurons, astrocytes, and OLs efficiently. PDGFR-α, APC, ID4, PLLP, and other markers were related to NSC differentiation and OL maturation. Moreover, we refined a screening method for ERBB4 and SORL1, which may underlie NSC differentiation and OL maturation. Potential unreported genes and proteins may regulate differentiation of human neural stem cells into oligodendrocyte lineage. Neural stem cells (NSCs) can differentiate into neurons, astrocytes, and oligodendrocyte (OLs) efficiently. By analyzing the DE mRNAs and proteins of NSCs and OLs lineage, we could identify reported markers and unreported markers of ERBB4 and SORL1 that may underlie regulate NSC differentiation and OL maturation.


Assuntos
Células-Tronco Neurais , Proteômica , Humanos , Células Cultivadas , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
12.
Adv Exp Med Biol ; 1394: 137-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587386

RESUMO

The CNS tumors, in particular those with malignant characteristics, are prominent burdens around the world with high mortality and low cure rate. Given that, researchers were curious about novel treatments with promising effectiveness which resulted in shifting the dogmatism era of neurogenesis to the current concept of postnatal neurogenesis. Considering all existing stem cells, various strategies are available for treating CNS cancers, including hematopoietic stem cells transplantation, mesenchymal stem cells transplantation, neural stem cells (NSCs) transplantation, and using stem cells as genetic carriers called "suicide gene therapy". Despite some complications, this ongoing therapeutic method has succeeded in decreasing tumor volume, inhibiting tumor progression, and enhancing patients' survival. These approaches could lead to acceptable results, relatively better safety, and tolerable side effects compared to conventional chemo and radiotherapy. Accordingly, this treatment will be applicable to a wide range of CNS tumors in the near future. Furthermore, tumor genomic analysis and understanding of the underlying molecular mechanisms will help researchers determine patient selection criteria for targeted gene therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Neurais , Traumatismos da Medula Espinal , Neoplasias da Medula Espinal , Humanos , Encéfalo , Células-Tronco Neurais/transplante , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Neoplasias da Medula Espinal/terapia , Traumatismos da Medula Espinal/terapia , Medula Espinal
13.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901772

RESUMO

Exposure to chemicals may pose a greater risk to vulnerable groups, including pregnant women, fetuses, and children, that may lead to diseases linked to the toxicants' target organs. Among chemical contaminants, methylmercury (MeHg), present in aquatic food, is one of the most harmful to the developing nervous system depending on time and level of exposure. Moreover, certain man-made PFAS, such as PFOS and PFOA, used in commercial and industrial products including liquid repellants for paper, packaging, textile, leather, and carpets, are developmental neurotoxicants. There is vast knowledge about the detrimental neurotoxic effects induced by high levels of exposure to these chemicals. Less is known about the consequences that low-level exposures may have on neurodevelopment, although an increasing number of studies link neurotoxic chemical exposures to neurodevelopmental disorders. Still, the mechanisms of toxicity are not identified. Here we review in vitro mechanistic studies using neural stem cells (NSCs) from rodents and humans to dissect the cellular and molecular processes changed by exposure to environmentally relevant levels of MeHg or PFOS/PFOA. All studies show that even low concentrations dysregulate critical neurodevelopmental steps supporting the idea that neurotoxic chemicals may play a role in the onset of neurodevelopmental disorders.


Assuntos
Compostos de Metilmercúrio , Células-Tronco Neurais , Síndromes Neurotóxicas , Criança , Humanos , Feminino , Gravidez , Compostos de Metilmercúrio/toxicidade , Substâncias Perigosas/farmacologia
14.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838614

RESUMO

Diamond is a promising material for the biomedical field, mainly due to its set of characteristics such as biocompatibility, strength, and electrical conductivity. Diamond can be synthesised in the laboratory by different methods, is available in the form of plates or films deposited on foreign substrates, and its morphology varies from microcrystalline diamond to ultrananocrystalline diamond. In this review, we summarise some of the most relevant studies regarding the adhesion of cells onto diamond surfaces, the consequent cell growth, and, in some very interesting cases, the differentiation of cells into neurons and oligodendrocytes. We discuss how different morphologies can affect cell adhesion and how surface termination can influence the surface hydrophilicity and consequent attachment of adherent proteins. At the end of the review, we present a brief perspective on how the results from cell adhesion and biocompatibility can make way for the use of diamond as biointerface.


Assuntos
Diamante , Diamante/química , Proliferação de Células , Adesão Celular , Diferenciação Celular/fisiologia
15.
Development ; 146(4)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30745428

RESUMO

The self-renewal activity of neural stem cells (NSCs) has been suggested to decrease with aging, resulting in age-dependent declines in brain function, such as presbyopia and memory loss. The molecular mechanisms underlying decreases in NSC proliferation with age need to be elucidated in more detail to develop treatments that promote brain function. We have previously reported that the expression of esophageal cancer-related gene 4 (Ecrg4) was upregulated in aged NSCs, whereas its overexpression decreased NSC proliferation, suggesting a functional relationship between Ecrg4 and NSC aging. Using Ecrg4-deficient mice in which the Ecrg4 locus was replaced with the lacZ gene, we here show that Ecrg4 deficiency recovered the age-dependent decline in NSC proliferation and enhanced spatial learning and memory in the Morris water-maze paradigm. We demonstrate that the proliferation of Ecrg4-deficient NSCs was partly maintained by the increased expression of Foxg1. Collectively, these results determine Ecrg4 as a NSC aging factor.


Assuntos
Envelhecimento , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Proliferação de Células , Replicação do DNA , Feminino , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima
16.
J Neuroinflammation ; 19(1): 253, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217178

RESUMO

BACKGROUND: The immune system has been implicated in synaptic plasticity, inflammation, and the progression of Alzheimer's disease (AD). However, there were few studies on improving the niche microenvironment of neural stem cells (NSCs) in the brain of AD to promote adult hippocampal neurogenesis (AHN) by regulating the function of non-parenchymal immune cells. METHODS: The lymph nodes of amyloid precursor protein/presenilin 1 (APP/PS1) and 3xTg (APP/PS1/tau) mouse models of AD were treated with photobiomodulation therapy (PBMT) for 10 J/cm2 per day for 1 month (10 min for each day), T lymphocytes isolated from these two AD models were treated with PBMT for 2 J/cm2 (5 min for each time). The NSCs isolated from hippocampus of these two AD models at E14, and the cells were co-cultivated with PBMT-treated T lymphocyte conditioned medium for NSCs differentiation. RESULTS: Our results showed that PBMT treatment could promote AHN and reverse cognitive deficits in AD mouse model. The expression of interferon-γ (IFN-γ) and interleukin-10 (IL-10) was upregulated in the brain of these two AD models after PBMT treated, which was induced by the activation of Janus kinase 2 (JAK2)-mediated signal transducer and activator of transcription 4 (STAT4)/STAT5 signaling pathway in CD4+ T cells. In addition, elevated CD4+ T cell levels and upregulated transforming growth factor-ß1 (TGFß1)/insulin-like growth factors-1 (IGF-1)/brain-derived neurotrophic factor (BDNF) protein expression levels were also detected in the brain. More importantly, co-cultivated the PBMT-treated T lymphocyte conditioned medium with NSCs derived from these two AD models was shown to promote NSCs differentiation, which was reflected in the upregulation of both neuronal class-III ß-tubulin (Tuj1) and postsynaptic density protein 95 (PSD95), but the effects of PBMT was blocked by reactive oxygen species (ROS) scavenger or JAK2 inhibitor. CONCLUSION: Our research suggests that PBMT exerts a beneficial neurogenesis modulatory effect through activating the JAK2/STAT4/STAT5 signaling pathway to promote the expression of IFN-γ/IL-10 in non-parenchymal CD4+ T cells, induction of improvement of brain microenvironmental conditions and alleviation of cognitive deficits in APP/PS1 and 3xTg-AD mouse models.


Assuntos
Doença de Alzheimer , Terapia com Luz de Baixa Intensidade , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cognição , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Presenilina-1/genética , Presenilina-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tubulina (Proteína)/metabolismo
17.
Stem Cells ; 39(7): 866-881, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33621399

RESUMO

A key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Reprogramação Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Reparo do DNA/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33739574

RESUMO

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Assuntos
Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-fos , Fatores de Transcrição SOXB1 , Animais , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
19.
Mol Ther ; 29(1): 103-120, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33038325

RESUMO

Tissue stem cell senescence leads to stem cell exhaustion, which results in tissue homeostasis imbalance and a decline in regeneration capacity. However, whether neural stem cell (NSC) senescence occurs and causes neurogenesis reduction during aging is unknown. In this study, mice at different ages were used to detect age-related hippocampal NSC (H-NSC) senescence, as well as the function and mechanism of embryonic stem cell-derived small extracellular vesicles (ESC-sEVs) in rejuvenating H-NSC senescence. We found a progressive cognitive impairment, as well as age-related H-NSC senescence, in mice. ESC-sEV treatment significantly alleviated H-NSC senescence, recovered compromised self-renewal and neurogenesis capacities, and reversed cognitive impairment. Transcriptome analysis revealed that myelin transcription factor 1 (MYT1) is downregulated in senescent H-NSCs but upregulated by ESC-sEV treatment. In addition, knockdown of MYT1 in young H-NSCs accelerated age-related phenotypes and impaired proliferation and differentiation capacities. Mechanistically, ESC-sEVs rejuvenated senescent H-NSCs partly by transferring SMAD family members 4 (SMAD4) and 5 (SMAD5) to activate MYT1, which downregulated egl-9 family hypoxia inducible factor 3 (Egln3), followed by activation of hypoxia inducible factor 2 subunit α (HIF-2α), nicotinamide phosphoribosyl transferase (NAMPT), and sirtuin 1 (Sirt1) successively. Taken together, our results indicated that H-NSC senescence caused cellular exhaustion, neurogenesis reduction, and cognitive impairment during aging, which can be reversed by ESC-sEVs. Thus, ESC-sEVs may be promising therapeutic candidates for age-related diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Células-Tronco Neurais/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Senescência Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Transdução de Sinais
20.
Cell Mol Life Sci ; 78(23): 7339-7353, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34698883

RESUMO

Oct4, a class V POU-domain protein that is encoded by the Pou5f1 gene, is thought to be a key transcription factor in the early development of mammals. This transcription factor plays indispensable roles in pluripotent stem cells as well as in the acquisition of pluripotency during somatic cell reprogramming. Oct4 has also been shown to play a role as a pioneer transcription factor during zygotic genome activation (ZGA) from zebrafish to human. However, during the past decade, several studies have brought these conclusions into question. It was clearly shown that the first steps in mouse development are not affected by the loss of Oct4. Subsequently, the role of Oct4 as a genome activator was brought into doubt. It was also found that the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) could proceed without Oct4. In this review, we summarize recent findings, reassess the role of Oct4 in reprogramming and ZGA, and point to structural features that may underlie this role. We speculate that pluripotent stem cells resemble neural stem cells more closely than previously thought. Oct4 orthologs within the POUV class hold key roles in genome activation during early development of species with late ZGA. However, in Placentalia, eutherian-specific proteins such as Dux overtake Oct4 in ZGA and endow them with the formation of an evolutionary new tissue-the placenta.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Neurais/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Ativação Transcricional/fisiologia , Animais , Reprogramação Celular , Dimerização , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Placenta/fisiologia , Gravidez , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA