Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 101(3): 259-266, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657128

RESUMO

The human epidermal melanocyte (hEM) are melanin-producing cells that provide skin pigmentation and protection against ultraviolet radiation. Although purinergic signaling is involved in skin biology and pathology, the presence of NTPDase members, as well as the rate of nucleotides degradation by melanocytes were not described yet. Therefore, in this study, we analyzed the expression of ectonucleotidases in hEM derived from discarded foreskin of male patients. The expression of purinergic enzymes was confirmed by mRNA and flow cytometry. Among the ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5´-nucleotidase were the ectoenzymes with higher expressions. The hydrolysis rate for ATP, ADP, and AMP was low in comparison to other primary cells already investigated. The amount of ATP in the culture medium was increased after a scratch wound and decreased to basal levels in 48 h, while the NTPDase1 and P2X7 expressions increased. Therefore, it is possible to suggest that after cell injury, the ATP released by hEM into the extracellular space will be hydrolyzed by ectonucleotidases as the NTPDase1 that will control the levels of nucleotides in the skin micro-environment.


Assuntos
Nucleotídeos , Raios Ultravioleta , Humanos , Masculino , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Melanócitos/metabolismo , Pele/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Bioorg Chem ; 135: 106460, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023582

RESUMO

Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.


Assuntos
Trifosfato de Adenosina , Ticlopidina , Adenosina , Plaquetas , Relação Estrutura-Atividade , 5'-Nucleotidase/metabolismo
3.
Bioorg Chem ; 129: 106196, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279741

RESUMO

The h-NTPDases is an essential family of ectonucleotidases that consists of eight isozymes with various physiological functions. The undesired activity of the h-NTPDases leads to pathological conditions such as cancer, diabetes, inflammation, and thrombosis. In the present study, a series of thienopyrimidines was synthesized employing a sequential SNAr and Suzuki coupling to synthesize diverse aryl substituted thienopyrimidine glycinate derivatives. The synthesized compounds constituted electron donating, electron-deficient, heteroaryl, and fluorinated substituents. The thienopyrimidines were screened against h-NTPDases to determine the effect on the activity of the h-NTPDases-1, -2, -3, and -8. The compound 3j selectively blocked the isozyme h-NTPDases1, while the compounds 3e, 3m, and 4a were selective inhibitors of h-NTPDases2. The activity of the isozyme h-NTPDases3 was selectively reduced by inhibitor 3k whereas, the compound 3d was found as the most active inhibitor against isozyme h-NTPDase8. The molecular docking study interpreted the interactions of the potent inhibitors of the respective isozymes with important amino acid residues i.e., Asp54, Ser57, His59, Ser58, His59, Asp213, and Phe360 of h-NTPDases1 protein; residues Arg 392, Ala393, Ala347, Tye350 and Arg245 of h-NTPDases2; amino acids Arg67, Ser65, Ala323, Gly222, and Tyr375 of h-NTPDases3 whereas in case of h-NTPDases8, the residues Val436, Gln74, Gly179, and Val71 were involved in interaction with the inhibitors docked into the active sites of these isozymes.


Assuntos
Isoenzimas , Pirimidinas , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Estrutura Molecular
4.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498985

RESUMO

Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).


Assuntos
Doença de Chagas , Trypanosoma cruzi , Camundongos , Animais , Doença de Chagas/genética , Doença de Chagas/parasitologia , Coração , Modelos Animais de Doenças
5.
Exp Physiol ; 106(4): 1024-1037, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624912

RESUMO

NEW FINDING: What is the central question of this study? How does moderate-intensity aerobic exercise affect the behaviour of purinergic enzymes in sedentary, overweight and physically active subjects? What is the relationship between purinergic and inflammatory responses triggered by exercise? What is the main finding and its importance? Moderate-intensity aerobic exercise modifies the activity of purinergic enzymes and the levels of nucleotides and nucleosides. These results are similar in subjects with different biological characteristics. 5'-Nucleotidase activity and adenosine levels are associated with inflammatory responses. This study suggests that a purinergic pathway is related to the inflammatory responses triggered by exercise. ABSTRACT: Purinergic signalling is a mechanism of extracellular communication that modulates events related to exercise, such as inflammation and coagulation. Herein, we evaluated the effects of acute moderate-intensity exercise on the activities of purinergic enzymes and plasma levels of adenine nucleotides in individuals with distinct metabolic characteristics. We analysed the relationship between purinergic parameters, inflammatory responses and cardiometabolic markers. Twenty-four healthy males were assigned to three groups: normal weight sedentary (n = 8), overweight sedentary (n = 8) and normal weight physically active (n = 8). The volunteers performed an acute session of moderate-intensity aerobic exercise on a treadmill at 70% of V̇O2peak ; blood samples were drawn at baseline, immediately post-exercise and at 1 h post-exercise. Immediately post-exercise, all subjects showed increases in ATP, ADP, AMP and p-nitrophenyl thymidine 5'-monophosphate hydrolysis, while AMP hydrolysis remained increased at 1 h after exercise. High-performance liquid chromatography analysis demonstrated lower levels of ATP and ADP at post- and 1 h post-exercise in all groups. Conversely, adenosine and inosine levels increased at post-exercise, but only adenosine remained augmented at 1 h after exercise in all groups. With regard to inflammatory responses, the exercise protocol increased tumour necrosis factor α (TNF-α) and interleukin 8 (IL-8) concentrations in all subjects, but only TNF-α remained elevated at 1 h after exercise. Significant correlations were found between the activity of 5'-nucleotidase, adenosine levels, V̇O2peak , triglyceride, TNF-α and IL-8 levels. Our findings suggest a purinergic signalling pathway that participates, at least partially, in the inflammatory responses triggered by acute moderate-intensity exercise. The response of soluble nucleotidases to acute moderate exercise appears to be similar between subjects of different biological profiles.


Assuntos
Exercício Físico , Sobrepeso , Adenosina , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Inflamação , Masculino
6.
Bioorg Chem ; 115: 105240, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416508

RESUMO

Quinoline derivatives have interesting biological profile. In continuation for the comprehensive evaluations of substituted quinoline derivatives against human nucleoside triphosphate diphosphohydrolases (h-NTPDases) a series of substituted quinoline derivatives (2a-g, 3a-f, 4, 5a-c, 6) was synthesized. The inhibitory activities of the synthesized compounds were evaluated against four isoenzymes of human nucleoside triphosphate diphosphohydrolases (h-NTPDases). These quinoline derivatives had IC50 (µM) values in the range of 0.20-1.75, 0.77-2.20, 0.36-5.50 and 0.90-1.82 for NTPDase1, NTPDase2, NTPDase3 and NTPDase8, respectively. The derivative 3f was the most active compound against NTPDase1 (IC50, 0.20 ± 0.02 µM) that also possessed selectivity towards NTPDase1. Similarly, derivative 3b (IC50, 0.77 ± 0.06), 2h (IC50, 0.36 ± 0.01) and 2c (IC50, 0.90 ± 0.08) displayed excellent activity corresponding to NTPDase2, NTPDase3 and NTPdase8. The compound 5c emerged as a selective inhibitor of NTPDase8. The most active compounds were then investigated to determine their mode of inhibition and finally binding interactions of the active compounds were analyzed through molecular docking studies. The obtained results strongly support the quinoline scaffold's potential as potent and selective NTPDase inhibitor.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Apirase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Adenosina Trifosfatases/metabolismo , Apirase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
7.
Chem Biodivers ; 18(11): e2100439, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34665914

RESUMO

In this work, two synthetic aurones revealed moderate schistosomicidal potential in in vitro and in vivo assays. Aurones (1) and (2) promoted changes in tegument integrity and motor activity, leading to death of adult Schistosoma mansoni worms in in vitro assays. When administered orally (two doses of 50 mg/kg) in experimentally infected animals, synthetic aurones (1) and (2) promoted reductions of 56.20 % and 57.61 % of the parasite load and stimulated the displacement towards the liver of the remaining adult worms. The oogram analysis revealed that the treatment with both aurones interferes with the egg development kinetics in the intestinal tissue. Seeking an action target for compounds (1) and (2), the connection with NTPDases enzymes, recognized as important therapeutic targets for S. mansoni, was evaluated. Molecular docking studies have shown promising results. The dataset reveals the anthelmintic character of these compounds, which can be used in the development of new therapies for schistosomiasis.


Assuntos
Anti-Helmínticos/farmacologia , Benzofuranos/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose/tratamento farmacológico , Administração Oral , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/química , Benzofuranos/administração & dosagem , Benzofuranos/química , Relação Dose-Resposta a Droga , Feminino , Camundongos , Estrutura Molecular
8.
Adv Exp Med Biol ; 1202: 87-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034710

RESUMO

Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X7, is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioma/metabolismo , Glioma/patologia , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Nucleotídeos de Adenina/metabolismo , Animais , Humanos
9.
Cell Biol Int ; 42(6): 670-682, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29384228

RESUMO

Nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes that belong to the GDA1/CD39 protein superfamily. These enzymes catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP). Biochemical characterization of the nucleotidases/NTPDases from various types of cells, including those from plants, animals, and pathogenic organisms, has revealed the existence of several isoforms with different specificities with respect to divalent cations (magnesium, calcium, manganese, and zinc) and substrates. In mammals, the NTPDases play important roles in the regulation of thrombosis and inflammation. In parasites of the genus Leishmania, the causative agents of leishmaniasis, two NTPDase isoforms, termed NTPDase-1 and NTPDase-2 have been described. Independently of their cellular localization, whether cell-surface localized, secreted or targeted to other organelles, in some Leishmania species these NTPDases could be involved in parasite growth, infectivity, and virulence. Experimental evidence has suggested that the hydrolysis of ATP and ADP by parasite ecto-nucleotidases can down-modulate the host immune response. In this context, the present work provides an overview of recent works that show strong evidence not only of the involvement of the nucleotidases/NTPDases in Leishmania spp infectivity and virulence but also of the molecular mechanisms that lead to the success of the parasitic infection.


Assuntos
Leishmania/enzimologia , Nucleosídeo-Trifosfatase/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antígenos CD/química , Antígenos CD/metabolismo , Apirase/química , Apirase/metabolismo , Humanos , Leishmania/imunologia , Leishmania/fisiologia , Leishmaniose/parasitologia , Leishmaniose/patologia , Leishmaniose/veterinária , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Virulência
10.
J Struct Biol ; 197(3): 201-209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27810564

RESUMO

The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Apirase/química , Apirase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Estrutura Terciária de Proteína
11.
J Cell Biochem ; 118(8): 2430-2442, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120532

RESUMO

Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105+ , CD44+ , CD14- , CD34- , CD45- , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nucleotídeos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Condrogênese/genética , Condrogênese/fisiologia , Endoglina/genética , Endoglina/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hidrólise , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Limbo da Córnea/citologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Pirofosfatases/genética , Pirofosfatases/metabolismo , Pele/citologia
12.
Protein Expr Purif ; 131: 60-69, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27856402

RESUMO

Visceral Leishmaniasis (VL) represents an important global health problem in several warm countries around the world. The main targets in this study are the two nucleoside triphosphate diphosphohydrolases (NTPDases) from Leishmania infantum chagasi that are the main etiologic agent of VL in the New World. These enzymes, called LicNTPDase1 and -2, are homologous to members 5 and 6 of the mammalian E-NTPDase/CD39 superfamily of enzymes. These enzymes hydrolyze nucleotides and accordingly can participate in the purine salvage pathways and in the modulation of purinergic signaling through the extracellular nucleotide-dependent host immune responses. They can therefore affect adhesion and infection of host cells and the parasite virulence. To further characterize these enzymes, in this work, we expressed LicNTPDase1 and -2 in the classical bacterial system Escherichia coli and mammalian cell system COS-7 cells. Our data demonstrate that changes in refolding after expression in bacteria can increase the activity of recombinant (r) rLicNTPDase2 up to 20 times but has no significant effect on rLicNTPDase1. Meanwhile, the expression in COS-7 led to a significant increase in activity for rLicNTPDase1.


Assuntos
Adenosina Trifosfatases , Antígenos CD , Apirase , Expressão Gênica , Leishmania infantum/genética , Redobramento de Proteína , Proteínas de Protozoários , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Animais , Antígenos CD/biossíntese , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/isolamento & purificação , Apirase/biossíntese , Apirase/química , Apirase/genética , Apirase/isolamento & purificação , Células COS , Chlorocebus aethiops , Escherichia coli , Leishmania infantum/enzimologia , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
13.
Purinergic Signal ; 13(4): 443-465, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28710541

RESUMO

Damage in fish activates retina repair that restores sight. The purinergic signalling system serves multiple homeostatic functions and has been implicated in cell cycle control of progenitor cells in the developing retina. We examined whether changes in the expression of purinergic molecules were instrumental in the proliferative phase after injury of adult zebrafish retinas with ouabain. P2RY1 messenger RNA (mRNA) increased early after injury and showed maximal levels at the time of peak progenitor cell proliferation. Extracellular nucleotides, mainly ADP, regulate P2RY1 transcriptional and protein expression. The injury-induced upregulation of P2RY1 is mediated by an autoregulated mechanism. After injury, the transcriptional expression of ecto-nucleotidases and ecto-ATPases also increased and ecto-ATPase activity inhibitors decreased Müller glia-derived progenitor cell amplification. Inhibition of P2RY1 endogenous activation prevented progenitor cell proliferation at two intervals after injury: one in which progenitor Müller glia mitotically activates and the second one in which Müller glia-derived progenitor cells amplify. ADPßS induced the expression of lin28a and ascl1a genes in mature regions of uninjured retinas. The expression of these genes, which regulate multipotent Müller glia reprogramming, was significantly inhibited by blocking the endogenous activation of P2RY1 early after injury. We consistently observed that the number of glial fibrillary acidic protein-BrdU-positive Müller cells after injury was larger in the absence than in the presence of the P2RY1 antagonist. Ecto-ATPase activity inhibitors or P2RY1-specific antagonists did not modify apoptotic cell death at the time of peak progenitor cell proliferation. The results suggested that ouabain injury upregulates specific purinergic signals which stimulates multipotent progenitor cell response.


Assuntos
Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Pluripotentes/fisiologia , Receptores Purinérgicos P2Y1/metabolismo , Retina/fisiologia , Animais , Mitose , Células-Tronco Neurais , Neurogênese/fisiologia , Retina/citologia , Transdução de Sinais/fisiologia , Regulação para Cima , Peixe-Zebra
14.
J Cell Biochem ; 116(12): 2915-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26018728

RESUMO

Mesenchymal stem cells (MSCs) are population of adult stem cells and attractive candidates for cartilage repair due to their chondrogenic potential. Purinergic compounds (purinergic receptors and ecto-enzymes metabolizing nucleotides), together with nucleotides/nucleosides present in the extracellular environment, are known to play a key role in controlling the stem cells biological potential to proliferate and differentiate. Despite the available literature pointing to the importance of purinergic signaling in controlling the fate of MSCs, the research results linking nucleotides and ecto-nucleotidases with MSCs chondrogenic differentiation are indigent. Therefore, the aim of presented study was the characterization of the ecto-nucleotides hydrolysis profile and ecto-enzymes expression in human umbilical cord-derived MSCs and chondrogenically induced MSCs. We described substantial changes of ecto-nucleotides metabolism and ecto-enzymes expression profiles resulting from chondrogenic differentiation of human umbilical cord-derived MSCs. The increased rate of ADP hydrolysis, measured by ecto-nucleotidases activity, plays a pivotal role in the regulation of cartilage formation and resorption. Despite the increased level of NTPDase1 and NTPDase3 mRNA expression in chondrogenically induced MSCs, their activity toward ATP remains quite low. Supported by the literature data, we hypothesize that structure-function relationships in chondrogenic lineage dictate the direction of nucleotides metabolism. In early neocartilage tissue, the beneficial role of ATP in improving biomechanical properties of cartilage does not necessitate the high rate of enzymatic ATP degradation.


Assuntos
Antígenos CD/biossíntese , Apirase/biossíntese , Diferenciação Celular/genética , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Pirofosfatases/biossíntese , Trifosfato de Adenosina/metabolismo , Adulto , Antígenos CD/genética , Apirase/genética , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Pirofosfatases/genética , RNA Mensageiro/biossíntese , Transdução de Sinais/genética
15.
J Cell Biochem ; 115(10): 1673-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802095

RESUMO

Mesenchymal stem cells (MSCs) have shown a great potential for cell-based therapy and many different therapeutic purposes. Despite the recent advances in the knowledge of MSCs biology, their biochemical and molecular properties are still poorly defined. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eNT/CD73) are widely expressed enzymes that hydrolyze extracellular nucleotides, generating an important cellular signaling cascade. Currently, studies have evidenced the relationship between the purinergic system and the development, maintenance, and differentiation of stem cells. The objective of this study is to identify the NTPDases and eNT/CD73 and compare the levels of nucleotide hydrolysis on MSCs isolated from different murine tissues (bone marrow, lung, vena cava, kidney, pancreas, spleen, skin, and adipose tissue). MSCs from all tissues investigated expressed the ectoenzymes at different levels. In MSCs from pancreas and adipose tissue, the hydrolysis of triphosphonucleosides was significantly higher when compared to the other cells. The diphosphonucleosides were hydrolyzed at a higher rate by MSC from pancreas when compared to MSC from other tissues. The differential nucleotide hydrolysis activity and enzyme expression in these cells suggests that MSCs play different roles in regulating the purinergic system in these tissues. Overall MSCs are an attractive adult-derived cell population for therapies, however, the fact that ecto-nucleotide metabolism can affect the microenvironment, modulating important events, such as immune response, makes the assessment of this metabolism an important part of the characterization of MSCs to be applied therapeutically.


Assuntos
5'-Nucleotidase/metabolismo , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Nucleotídeos/metabolismo , Pirofosfatases/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais
16.
ChemMedChem ; 18(14): e202300165, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132413

RESUMO

In this study various of thieno[3,2-d]pyrimidine derivatives have been synthesized by treating different secondary amines through aromatic nucleophilic substitution reaction (SN Ar) followed by Suzuki reaction with aryl and heteroaryl boronic acids. A bis-Suzuki coupling was also performed to generate bis-aryl thienopyrimidine derivatives. The synthesized compounds were screened for the hydrolytic activity of h-NTPdase1, h-NTPdase2, h-NTPdase3, and h-NTPdase8. The compound N-benzyl-N-methyl-7-phenylthieno[3,2-d]pyrimidin-4-amine 3 j selectively inhibits the activity of h-NTPdase1 with IC50 value of 0.62±0.02 µM whereas, the compound 4 d was the most potent inhibitor of h-NTPdase2 with sub-micromolar IC50 value of 0.33±0.09 µM. Similarly, compounds 4 c and 3 b were found to be selective inhibitors for isozymes h-NTPdase3 (IC50 =0.13±0.06 µM) and h-NTPdase8 (IC50 =0.32±0.10 µM), respectively. The molecular docking study of the compounds with the highest potency and selectivity revealed the interactions with the important amino acid residues.


Assuntos
Aminas , Aminoácidos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Pirimidinas/química , Estrutura Molecular
17.
Bone Rep ; 17: 101608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35992507

RESUMO

ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces.

18.
Front Cell Infect Microbiol ; 11: 769922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858878

RESUMO

Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.


Assuntos
Leishmania , Parasitos , Trichomonas vaginalis , Trypanosoma , Trifosfato de Adenosina , Animais , Interações Hospedeiro-Parasita
19.
Life Sci ; 256: 117862, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473244

RESUMO

Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina Trifosfatases/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Músculo Liso Vascular/patologia , Doenças Vasculares/fisiopatologia , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aorta/citologia , Simulação por Computador , Proteínas Ligadas por GPI/metabolismo , Camundongos , Músculo Liso Vascular/enzimologia , Nucleotídeos/metabolismo , Ratos , Ratos Wistar , Doenças Vasculares/enzimologia
20.
JHEP Rep ; 2(6): 100165, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33103092

RESUMO

Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA