RESUMO
Neopeltolide, a natural product isolated from deep-water sponge specimen of the family neopeltidae, has been proven to be a novel inhibitor of cytochrome bc1. In this study, a series of neopeltolide derivatives was designed by replacing the 14-membered macrolactone with indole ring and confirmed by 1H NMR, 13C NMR, and HRMS. Based on the binding mode of 12h with bc1 complex, the IC50 values of compounds 16a-f (ranging from 0.70 to 1.46 µM) were improved significantly than the ester derivatives 12a-u by replacing the ester with amide linker. Subsequently, the molecular docking results indicated that compound 16e could form a π-π interaction with Phe274 and two H-bonds with Glu271 and His161 and the latter H-bond was found to account for its high activity. The present work accelerates the discovery of novel bc1 complex inhibitors to deal with the resistance that the existing bc1 complex inhibitors are facing and provides a valuable idea for the design of new fungicides.
Assuntos
Produtos Biológicos/farmacologia , Desenho de Fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Macrolídeos/farmacologia , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Macrolídeos/química , Macrolídeos/isolamento & purificação , Simulação de Acoplamento Molecular , Estrutura Molecular , Poríferos/química , Relação Estrutura-AtividadeRESUMO
A flexible redox-neutral coupling of aldehydes and alkenes enables rapid access to stereotriads starting from a single stereocenter with perfect levels of enantio- and diastereoselectivity under mild conditions. The versatility of the method is highlighted by the installation of heteroatoms along the tether, which enables a route to structurally diverse building blocks. The formal synthesis of (+)-neopeltolide further demonstrates the synthetic utility of this approach.
RESUMO
Neopeltolide, isolated in 2007, with its novel structural features and potent anti cancer cell proliferation activity, has attracted a tremendous amount of synthetic efforts. This review briefly and chronologically summarizes each of the synthesis with the main focus on the strategies and methodologies for the construction of its cis-tetrahydropyran-containing macrolactone core.
RESUMO
Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring-closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule.
Assuntos
Alcenos/química , Macrolídeos/síntese química , Alcenos/síntese química , Catálise , Complexos de Coordenação/química , Molibdênio/química , Rutênio/química , EstereoisomerismoRESUMO
A novel Pd-catalyzed cascade alkoxycarbonylative macrolactonization to construct tetrahydropyran/tetrahydrofuran-containing bridged macrolactones in one step from alkendiols is described. Products with various ring sizes and substituents were obtained. Challenging macrolactones involving tertiary alcohols were synthesized smoothly as well. Mechanistically, experimental evidence to support a trans-oxypalladation step has been provided. The method was applied to the synthesis of potent anticancer compound 9-demethylneopeltolide.
Assuntos
Furanos/química , Macrolídeos/síntese química , Paládio/química , Piranos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Catálise , Estrutura MolecularRESUMO
Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.
RESUMO
The marine natural product neopeltolide was isolated from a deep-water sponge specimen of the family Neopeltidae. Neopeltolide has been proven to be a new type of inhibitor of the cytochrome bc1 complex in the mitochondrial respiration chain. However, its detailed inhibition mechanism has remained unknown. In addition, neopeltolide is difficult to synthesize because of its very complex chemical structure. In the present work, the binding mode of neopeltolide was determined for the first time by integrating molecular docking, molecular dynamics simulations, and molecular mechanics Poisson-Boltzmann surface area calculations, which showed that neopeltolide is a Qo site inhibitor of the bc1 complex. Then, according to guidance via inhibitor-protein interaction analysis, structural modification was carried out with the aim to simplify the chemical structure of neopeltolide, leading to the synthesis of a series of new neopeltolide derivatives with much simpler chemical structures. The calculated binding energies (Δ Gcal) of the newly synthesized analogues correlated very well ( R2 = 0.90) with their experimental binding free energies (Δ Gexp), which confirmed that the computational protocol was reliable. Compound 45, bearing a diphenyl ether fragment, was successfully designed and synthesized as the most potent candidate (IC50 = 12 nM) against porcine succinate cytochrome c reductase. The molecular modeling results indicate that compound 45 formed a π-π interaction with Phe274 and two hydrogen bonds with Glu271 and His161. The present work provides a new starting point for future fungicide discovery to overcome the resistance that the existing bc1 complex inhibitors are facing.