Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.898
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931245

RESUMO

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Humanos , Células-Tronco Neurais/metabolismo , Neurônios , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Encéfalo , Astrócitos
2.
Annu Rev Cell Dev Biol ; 40(1): 381-406, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38985883

RESUMO

Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Nicho de Células-Tronco , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Humanos , Ventrículos Laterais/citologia , Neurogênese , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Camundongos , Encéfalo/citologia , Diferenciação Celular
3.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765444

RESUMO

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Assuntos
Evolução Biológica , Encéfalo/citologia , Forma Celular/fisiologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Gorilla gorilla , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Organoides/metabolismo , Pan troglodytes , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
4.
Cell ; 184(3): 709-722.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482084

RESUMO

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.


Assuntos
Células-Tronco Adultas/metabolismo , Cálcio/metabolismo , Ritmo Circadiano , Espaço Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Citosol/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Melatonina/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Optogenética , Transdução de Sinais/efeitos dos fármacos , Triptaminas/farmacologia
5.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916131

RESUMO

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Dinâmica Mitocondrial , NAD/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Fosforilação Oxidativa , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Ciclo do Ácido Cítrico/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicólise/genética , Espectrometria de Massas , Metabolômica , Microscopia Eletrônica de Transmissão , Família Multigênica , Células-Tronco Neurais/patologia , Consumo de Oxigênio/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Transcriptoma/genética
6.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929900

RESUMO

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurogênese , Animais , Diferenciação Celular , Giro Denteado/metabolismo , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
7.
Cell ; 176(6): 1407-1419.e14, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827680

RESUMO

The function of somatic stem cells declines with age. Understanding the molecular underpinnings of this decline is key to counteract age-related disease. Here, we report a dramatic drop in the neural stem cells (NSCs) number in the aging murine brain. We find that this smaller stem cell reservoir is protected from full depletion by an increase in quiescence that makes old NSCs more resistant to regenerate the injured brain. Once activated, however, young and old NSCs show similar proliferation and differentiation capacity. Single-cell transcriptomics of NSCs indicate that aging changes NSCs minimally. In the aging brain, niche-derived inflammatory signals and the Wnt antagonist sFRP5 induce quiescence. Indeed, intervention to neutralize them increases activation of old NSCs during homeostasis and following injury. Our study identifies quiescence as a key feature of old NSCs imposed by the niche and uncovers ways to activate NSCs to repair the aging brain.


Assuntos
Encéfalo/fisiologia , Fatores Etários , Animais , Encéfalo/citologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Nicho de Células-Tronco
8.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
9.
EMBO J ; 43(3): 317-338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177500

RESUMO

Lifelong hippocampal neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). The mechanisms guiding transition of NSCs from the developmental to the adult state remain unclear. We show here, by using nestin-based reporter mice deficient for cyclin D2, that the aNSC pool is established through cyclin D2-dependent proliferation during the first two weeks of life. The absence of cyclin D2 does not affect normal development of the dentate gyrus until birth but prevents postnatal formation of radial glia-like aNSCs. Furthermore, retroviral fate mapping reveals that aNSCs are born on-site from precursors located in the dentate gyrus shortly after birth. Taken together, our data identify the critical time window and the spatial location of the precursor divisions that generate the persistent population of aNSCs and demonstrate the central role of cyclin D2 in this process.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Camundongos , Ciclina D2/genética , Giro Denteado , Hipocampo , Neurogênese
10.
Annu Rev Cell Dev Biol ; 30: 465-502, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000993

RESUMO

Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.


Assuntos
Neocórtex/crescimento & desenvolvimento , Neurogênese/fisiologia , Animais , Divisão Celular Assimétrica , Compartimento Celular , Linhagem da Célula , Membrana Celular/fisiologia , Núcleo Celular/fisiologia , Polaridade Celular , Líquido Cefalorraquidiano/fisiologia , Humanos , Junções Intercelulares/fisiologia , Ventrículos Laterais/embriologia , Lipídeos de Membrana/metabolismo , Microglia/fisiologia , Mitose , Neocórtex/citologia , Neocórtex/embriologia , Células-Tronco Neurais/classificação , Células-Tronco Neurais/fisiologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Neurônios/fisiologia , Organelas/fisiologia , Especificidade da Espécie
11.
Mol Cell ; 78(2): 329-345.e9, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32268122

RESUMO

Neural stem and progenitor cells (NSPCs) are critical for continued cellular replacement in the adult brain. Lifelong maintenance of a functional NSPC pool necessitates stringent mechanisms to preserve a pristine proteome. We find that the NSPC chaperone network robustly maintains misfolded protein solubility and stress resilience through high levels of the ATP-dependent chaperonin TRiC/CCT. Strikingly, NSPC differentiation rewires the cellular chaperone network, reducing TRiC/CCT levels and inducing those of the ATP-independent small heat shock proteins (sHSPs). This switches the proteostasis strategy in neural progeny cells to promote sequestration of misfolded proteins into protective inclusions. The chaperone network of NSPCs is more effective than that of differentiated cells, leading to improved management of proteotoxic stress and amyloidogenic proteins. However, NSPC proteostasis is impaired by brain aging. The less efficient chaperone network of differentiated neural progeny may contribute to their enhanced susceptibility to neurodegenerative diseases characterized by aberrant protein misfolding and aggregation.


Assuntos
Envelhecimento/genética , Chaperonas Moleculares/genética , Células-Tronco Neurais/metabolismo , Agregação Patológica de Proteínas/genética , Trifosfato de Adenosina/genética , Envelhecimento/patologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Diferenciação Celular/genética , Chaperoninas/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Camundongos , Chaperonas Moleculares/metabolismo , Células-Tronco Neurais/patologia , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Células-Tronco/metabolismo , Células-Tronco/patologia
12.
Genes Dev ; 34(23-24): 1599-1604, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184225

RESUMO

There is increasing evidence demonstrating that adult neural stem cells (NSCs) are a cell of origin of glioblastoma. Here we analyzed the interaction between transformed and wild-type NSCs isolated from the adult mouse subventricular zone niche. We found that transformed NSCs are refractory to quiescence-inducing signals. Unexpectedly, we also demonstrated that these cells induce quiescence in surrounding wild-type NSCs in a cell-cell contact and Notch signaling-dependent manner. Our findings therefore suggest that oncogenic mutations are propagated in the stem cell niche not just through cell-intrinsic advantages, but also by outcompeting neighboring stem cells through repression of their proliferation.


Assuntos
Glioblastoma/fisiopatologia , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/citologia , Receptores Notch/genética , Transdução de Sinais/fisiologia , Animais , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Ventrículos Laterais/citologia , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neurais/fisiologia
13.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265146

RESUMO

Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.


Assuntos
Giro Denteado , Células-Tronco Neurais , Animais , Camundongos , Giro Denteado/metabolismo , Proteólise , Células-Tronco Neurais/metabolismo , Astrócitos/metabolismo , Lisossomos/metabolismo
14.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251863

RESUMO

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Assuntos
Células-Tronco Neurais , Proteoglicanas , Camundongos , Animais , Proteoglicanas/metabolismo , Sulfatos de Condroitina , Proteoglicanas de Sulfatos de Condroitina , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Tronco Neurais/metabolismo
15.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39284714

RESUMO

The number of neural stem cells reflects the total number of neurons in the mature brain. As neural stem cells arise from neuroepithelial cells, the neuroepithelial cell population must be expanded to secure a sufficient number of neural stem cells. However, molecular mechanisms that regulate timely differentiation from neuroepithelial to neural stem cells are largely unclear. Here, we show that TCF4/Daughterless is a key factor that determines the timing of the differentiation in Drosophila. The neuroepithelial cells initiated but never completed the differentiation in the absence of TCF4/Daughterless. We also found that TCF4/Daughterless binds to the Notch locus, suggesting that Notch is one of its downstream candidate genes. Consistently, Notch expression was ectopically induced in the absence of TCF4/Daughterless. Furthermore, ectopic activation of Notch signaling phenocopied loss of TCF4/Daughterless. Our findings demonstrate that TCF4/Daughterless directly inactivates Notch signaling pathway, resulting in completion of the differentiation from neuroepithelial cells into neural stem cells with optimal timing. Thus, the present results suggest that TCF4/Daughterless is essential for determining whether to move to the next state or stay in the current state in differentiating neuroepithelial cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas de Drosophila , Células-Tronco Neurais , Células Neuroepiteliais , Receptores Notch , Transdução de Sinais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Neuroepiteliais/metabolismo , Células Neuroepiteliais/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/citologia , Fatores de Tempo , Drosophila/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968101

RESUMO

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/fisiologia , Camundongos , Resinas Acrílicas/química , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Matriz Extracelular/metabolismo , Estresse Mecânico
17.
Proc Natl Acad Sci U S A ; 121(8): e2318030121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346182

RESUMO

The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through ß3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or ß3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/ß3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.


Assuntos
Relógios Circadianos , Células-Tronco Neurais , Humanos , Adulto , Ritmo Circadiano/fisiologia , Hipocampo , Relógios Circadianos/fisiologia , Receptores Adrenérgicos
18.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312657

RESUMO

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Assuntos
Neurônios Colinérgicos , Giro Denteado , Células-Tronco Neurais , Neurogênese , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Giro Denteado/metabolismo , Giro Denteado/citologia , Neurogênese/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Camundongos , Proliferação de Células , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/citologia , Morfogênese , Nicho de Células-Tronco/fisiologia , Masculino
19.
Hum Mol Genet ; 33(20): 1758-1770, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39087769

RESUMO

Investigating the sevoflurane-induced perturbation in the differentiation of mouse embryonic stem cells (mESCs) into neural stem cells (mNSCs), our study delineates a novel SIRT1/PRRX1/DRD2/PKM2/NRF2 axis as a key player in this intricate process. Sevoflurane treatment hindered mESC differentiation, evidenced by altered expression patterns of pluripotency and neural lineage markers. Mechanistically, sevoflurane downregulated Sirt1, setting in motion a signaling cascade. Sevoflurane may inhibit PKM2 dimerization and NRF2 signaling pathway activation by inhibiting the expression of SIRT1 and its downstream genes Prrx1 and DRD2, ultimately inhibiting mESCs differentiation into mNSCs. These findings contribute to our understanding of the molecular basis of sevoflurane-induced neural toxicity, presenting a potential avenue for therapeutic intervention in sevoflurane-induced perturbation in the differentiation of mESCs into mNSCs by modulating the SIRT1/PRRX1/DRD2/PKM2/NRF2 axis.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Células-Tronco Embrionárias Murinas , Fator 2 Relacionado a NF-E2 , Células-Tronco Neurais , Receptores de Dopamina D2 , Sevoflurano , Transdução de Sinais , Sirtuína 1 , Sirtuína 1/metabolismo , Sirtuína 1/genética , Animais , Camundongos , Sevoflurano/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
20.
EMBO J ; 41(11): e110409, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451150

RESUMO

Astrocytes are highly abundant in the mammalian brain, and their functions are of vital importance for all aspects of development, adaption, and aging of the central nervous system (CNS). Mounting evidence indicates the important contributions of astrocytes to a wide range of neuropathies. Still, our understanding of astrocyte development significantly lags behind that of other CNS cells. We here combine immunohistochemical approaches with genetic fate-mapping, behavioural paradigms, single-cell transcriptomics, and in vivo two-photon imaging, to comprehensively assess the generation and the proliferation of astrocytes in the dentate gyrus (DG) across the life span of a mouse. Astrogenesis in the DG is initiated by radial glia-like neural stem cells giving rise to locally dividing astrocytes that enlarge the astrocyte compartment in an outside-in-pattern. Also in the adult DG, the vast majority of astrogenesis is mediated through the proliferation of local astrocytes. Interestingly, locally dividing astrocytes were able to adapt their proliferation to environmental and behavioral stimuli revealing an unexpected plasticity. Our study establishes astrocytes as enduring plastic elements in DG circuits, implicating a vital contribution of astrocyte dynamics to hippocampal plasticity.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Astrócitos/fisiologia , Giro Denteado , Hipocampo/fisiologia , Mamíferos , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA