Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(7): 1762-1768.e9, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38471501

RESUMO

Biological dinitrogen (N2) fixation is a key metabolic process exclusively performed by prokaryotes, some of which are symbiotic with eukaryotes. Species of the marine haptophyte algae Braarudosphaera bigelowii harbor the N2-fixing endosymbiotic cyanobacteria UCYN-A, which might be evolving organelle-like characteristics. We found that the size ratio between UCYN-A and their hosts is strikingly conserved across sublineages/species, which is consistent with the size relationships of organelles in this symbiosis and other species. Metabolic modeling showed that this size relationship maximizes the coordinated growth rate based on trade-offs between resource acquisition and exchange. Our findings show that the size relationships of N2-fixing endosymbionts and organelles in unicellular eukaryotes are constrained by predictable metabolic underpinnings and that UCYN-A is, in many regards, functioning like a hypothetical N2-fixing organelle (or nitroplast).


Assuntos
Cianobactérias , Haptófitas , Fixação de Nitrogênio , Cianobactérias/metabolismo , Haptófitas/citologia , Haptófitas/metabolismo , Haptófitas/microbiologia , Nitrogênio/metabolismo , Simbiose
2.
Cell ; 185(1): 145-157.e13, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995513

RESUMO

Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Biofilmes/crescimento & desenvolvimento , Padronização Corporal/genética , Bacillus subtilis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Transdução de Sinais/genética , Somitos/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Tempo
3.
EMBO J ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256560

RESUMO

Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.

4.
EMBO J ; 43(12): 2486-2505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698215

RESUMO

The Casparian strip is a barrier in the endodermal cell walls of plants that allows the selective uptake of nutrients and water. In the model plant Arabidopsis thaliana, its development and establishment are under the control of a receptor-ligand mechanism termed the Schengen pathway. This pathway facilitates barrier formation and activates downstream compensatory responses in case of dysfunction. However, due to a very tight functional association with the Casparian strip, other potential signaling functions of the Schengen pathway remain obscure. In this work, we created a MYB36-dependent synthetic positive feedback loop that drives Casparian strip formation independently of Schengen-induced signaling. We evaluated this by subjecting plants in which the Schengen pathway has been uncoupled from barrier formation, as well as a number of established barrier-mutant plants, to agar-based and soil conditions that mimic agricultural settings. Under the latter conditions, the Schengen pathway is necessary for the establishment of nitrogen-deficiency responses in shoots. These data highlight Schengen signaling as an essential hub for the adaptive integration of signaling from the rhizosphere to aboveground tissues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nitrogênio , Brotos de Planta , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Nitrogênio/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Solo/química , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Parede Celular/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Trends Biochem Sci ; 48(11): 917-919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517884

RESUMO

A modern green revolution is needed to ensure global food security. Recently, Song et al. reported a new strategy to create high-yielding, semi-dwarf wheat varieties with improved nitrogen-use efficiency by inhibiting brassinosteroid (BR) signaling through clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9)-mediated knockout of the ZnF-B gene encoding a zinc-finger RING-type E3 ligase.

6.
EMBO J ; 42(6): e111858, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36562188

RESUMO

Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.


Assuntos
Solanum lycopersicum , Fosforilação , Glutamato-Amônia Ligase/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas
7.
Annu Rev Microbiol ; 76: 597-618, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671534

RESUMO

Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation.


Assuntos
Anabaena , Cianobactérias , Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Fixação de Nitrogênio
8.
Plant Cell ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012965

RESUMO

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

9.
Proc Natl Acad Sci U S A ; 121(27): e2317077121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913899

RESUMO

We show that the Landsat and Sentinel-2 satellites can detect NO2 plumes from large point sources at 10 to 60 m pixel resolution in their blue and ultrablue bands. We use the resulting NO2 plume imagery to quantify nitrogen oxides (NOx) emission rates for several power plants in Saudi Arabia and the United States, including a 13-y analysis of 132 Landsat plumes from Riyadh power plant 9 from 2009 through 2021. NO2 in the plumes initially increases with distance from the source, likely reflecting recovery from ozone titration. The fine pixel resolutions of Landsat and Sentinel-2 enable separation of individual point sources and stacks, including in urban background, and the long records enable examination of multidecadal emission trends. Our inferred NOx emission rates are consistent with previous estimates to within a precision of about 30%. Sources down to ~500 kg h-1 can be detected over bright, quasi-homogeneous surfaces. The 2009 to 2021 data for Riyadh power plant 9 show a strong summer peak in emissions, consistent with increased power demand for air conditioning, and a marginal slow decrease following the introduction of Saudi Arabia's Ambient Air Standard 2012.

10.
Proc Natl Acad Sci U S A ; 121(32): e2322863121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074276

RESUMO

The nitrogen isotopes of the organic matter preserved in fossil fish otoliths (ear stones) are a promising tool for reconstructing past environmental changes. We analyzed the 15N/14N ratio (δ15N) of fossil otolith-bound organic matter in Late Cretaceous fish otoliths (of Eutawichthys maastrichtiensis, Eutawichthys zideki and Pterothrissus sp.) from three deposits along the US east coast, with two of Campanian (83.6 to 77.9 Ma) and one Maastrichtian (72.1 to 66 Ma) age. δ15N and N content were insensitive to cleaning protocol and the preservation state of otolith morphological features, and N content differences among taxa were consistent across deposits, pointing to a fossil-native origin for the organic matter. All three species showed an increase in otolith-bound organic matter δ15N of ~4‰ from Campanian to Maastrichtian. As to its cause, the similar change in distinct genera argues against changing trophic level, and modern field data argue against the different locations of the sedimentary deposits. Rather, the lower δ15N in the Campanian is best interpreted as an environmental signal at the regional scale or greater, and it may be a consequence of the warmer global climate. A similar decrease has been observed in foraminifera-bound δ15N during warm periods of the Cenozoic, reflecting decreased water column denitrification and thus contraction of the ocean's oxygen deficient zones (ODZs) under warm conditions. The same δ15N-climate correlation in Cretaceous otoliths raises the prospect of an ODZ-to-climate relationship that has been consistent over the last ~80 My, applying before and after the end-Cretaceous mass extinction and spanning changes in continental configuration.


Assuntos
Peixes , Fósseis , Isótopos de Nitrogênio , Membrana dos Otólitos , Animais , Membrana dos Otólitos/química , Membrana dos Otólitos/anatomia & histologia , Isótopos de Nitrogênio/análise , Peixes/metabolismo , Peixes/anatomia & histologia
11.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38728227

RESUMO

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Assuntos
Florestas , Nitrogênio , Folhas de Planta , Árvores , Nitrogênio/metabolismo , Nitrogênio/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Árvores/metabolismo , Carbono/metabolismo , Carbono/química , Ecossistema , Taiga , Ciclo do Carbono
12.
Proc Natl Acad Sci U S A ; 121(19): e2319022121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683986

RESUMO

Growth is a function of the net accrual of resources by an organism. Energy and elemental contents of organisms are dynamically linked through their uptake and allocation to biomass production, yet we lack a full understanding of how these dynamics regulate growth rate. Here, we develop a multivariate imbalance framework, the growth efficiency hypothesis, linking organismal resource contents to growth and metabolic use efficiencies, and demonstrate its effectiveness in predicting consumer growth rates under elemental and food quantity limitation. The relative proportions of carbon (%C), nitrogen (%N), phosphorus (%P), and adenosine triphosphate (%ATP) in consumers differed markedly across resource limitation treatments. Differences in their resource composition were linked to systematic changes in stoichiometric use efficiencies, which served to maintain relatively consistent relationships between elemental and ATP content in consumer tissues and optimize biomass production. Overall, these adjustments were quantitatively linked to growth, enabling highly accurate predictions of consumer growth rates.


Assuntos
Biomassa , Carbono , Nitrogênio , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Biológicos , Animais
13.
Proc Natl Acad Sci U S A ; 121(26): e2405524121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885378

RESUMO

Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.


Assuntos
Evolução Molecular , Filogenia , Transaminases , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Domínio Catalítico/genética , Nitrogênio/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(36): e2402946121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39213181

RESUMO

Non-CG DNA methylation, a plant-specific epigenetic mark mainly regulated by chromomethylase (CMT), is known to play important roles in Arabidopsis thaliana. However, whether and to what extent non-CG DNA methylation modulates agronomic traits in crops remain to be explored. Here, we describe the consequences of non-CG DNA hypomethylation on development, seed composition, and yield in soybean (Glycine max). We created a Gmcmt mutant line lacking function of all four CMT genes. This line exhibited substantial hypomethylation of non-CG (CHG and CHH) sites. Non-CG hypomethylation enhanced chromatin accessibility and promoted or repressed the expression of hundreds of functionally relevant genes, including upregulation of GOLDEN-LIKE 10 (GmGLK10), which led to enhanced photosynthesis and, unexpectedly, improved nitrogen fixation efficiency. The Gmcmt line produced larger seeds with increased protein content. This study provides insights into the mechanisms of non-CG methylation-based epigenetic regulation of soybean development and suggests viable epigenetic strategies for improving soybean yield and nutritional value.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Glycine max , Fixação de Nitrogênio , Fotossíntese , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Fotossíntese/genética , Fixação de Nitrogênio/genética , Epigênese Genética , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(30): e2401452121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39018193

RESUMO

Nitrophenols present on the surface of particulates are ubiquitous in the atmosphere. However, its atmospheric photochemical transformation pathway remains unknown, for which the crucial effect of visible light is largely overlooked, resulting in an incomplete understanding of the effects of nitrophenols in the atmospheric environment. This study delves into the photolysis mechanism of 4-nitrophenol (4NP), one of the most abundant atmospheric nitrophenol compounds, on the surface of photoactive particulates under visible light irradiation. Unexpectedly, the nonradical species (singlet oxygen, 1O2) was identified as a dominant factor in driving the visible photolysis of 4NP. The pathways of HONO and p-benzoquinone (C6H4O2) generation were clarified by acquiring direct evidence of C-N and O-H bond breakage in the nitro (-NO2) and hydroxyl (-OH) groups of 4NP. The further decomposition of HONO results in the generation of NO and hydroxyl radicals, which could directly contribute to atmospheric oxidizing capacity and complicate the PM2.5 composition. Significantly, the behavior of 1O2-induced visible photolysis of 4NP was universal on the surface of common particulates in the atmosphere, such as A1 dust and Fe2O3. This work advances the understanding of the photochemical transformation mechanism of particulate-phase atmospheric nitrophenols, which is indispensable in elucidating the role of nitrophenols in atmospheric chemistry.

16.
Proc Natl Acad Sci U S A ; 121(32): e2400819121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074283

RESUMO

To test the hypothesis that an abiotic Earth and its inert atmosphere could form chemically reactive carbon- and nitrogen-containing compounds, we designed a plasma electrochemical setup to mimic lightning-induced electrochemistry under steady-state conditions of the early Earth. Air-gap electrochemical reactions at air-water-ground interfaces lead to remarkable yields, with up to 40 moles of carbon dioxide being reduced into carbon monoxide and formic acid, and 3 moles of gaseous nitrogen being fixed into nitrate, nitrite, and ammonium ions, per mole of transmitted electrons. Interfaces enable reactants (e.g., minerals) that may have been on land, in lakes, and in oceans to participate in radical and redox reactions, leading to higher yields compared to gas-phase-only reactions. Cloud-to-ground lightning strikes could have generated high concentrations of reactive molecules locally, establishing diverse feedstocks for early life to emerge and survive globally.

17.
Proc Natl Acad Sci U S A ; 121(4): e2314396121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236736

RESUMO

In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.

18.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457518

RESUMO

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Assuntos
Cianobactérias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo
19.
J Cell Sci ; 137(12)2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38780300

RESUMO

Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.


Assuntos
Metabolismo dos Lipídeos , Mitose , Nitrogênio , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Nitrogênio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Mutação/genética
20.
Annu Rev Genet ; 52: 1-20, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30192637

RESUMO

My trajectory to becoming a plant biologist was shaped by a complex mix of scientific, political, sociological, and personal factors. I was trained as a microbiologist and molecular biologist in the late 1960s and early 1970s, a time of political upheaval surrounding the Vietnam War. My political activism taught me to be wary of the potential misuses of scientific knowledge and to promote the positive applications of science for the benefit of society. I chose agricultural science for my postdoctoral work. Because I was not trained as a plant biologist, I devised a postdoctoral project that took advantage of my microbiological training, and I explored using genetic technologies to transfer the ability to fix nitrogen from prokaryotic nitrogen-fixing species to the model plant Arabidopsis thaliana with the ultimate goal of engineering crop plants. The invention of recombinant DNA technology greatly facilitated the cloning and manipulation of bacterial nitrogen-fixation ( nif) genes, but it also forced me to consider how much genetic engineering of organisms, including human beings, is acceptable. My laboratory has additionally studied host-pathogen interactions using Arabidopsis and the nematode Caenorhabditis elegans as model hosts.


Assuntos
Arabidopsis/genética , Caenorhabditis elegans/genética , Interações Hospedeiro-Patógeno/genética , Simbiose/genética , Animais , Arabidopsis/microbiologia , Biologia/história , Caenorhabditis elegans/microbiologia , História do Século XX , História do Século XXI , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA