Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(26): 4954-4970.e20, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36493774

RESUMO

Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.


Assuntos
Poro Nuclear , Peixe-Zebra , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Zigoto/metabolismo , Genoma
2.
Cell ; 185(2): 361-378.e25, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34982960

RESUMO

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.


Assuntos
Adaptação Fisiológica , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Fluorescência , Simulação de Acoplamento Molecular , Membrana Nuclear/metabolismo , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Domínios Proteicos , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33964210

RESUMO

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Aneuploidia , Animais , Bovinos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos/metabolismo , Fertilização/genética , Humanos , Masculino , Microtúbulos/metabolismo , Mitose , Oócitos/metabolismo , Espermatozoides/metabolismo , Zigoto/metabolismo
4.
Cell ; 184(4): 1032-1046.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571428

RESUMO

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Infecções por HIV/virologia , HIV-1/ultraestrutura , Humanos , Modelos Biológicos , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Transcrição Reversa , Vírion/metabolismo , Internalização do Vírus , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
5.
Cell ; 183(7): 1785-1800.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333025

RESUMO

All proteins interact with other cellular components to fulfill their function. While tremendous progress has been made in the identification of protein complexes, their assembly and dynamics remain difficult to characterize. Here, we present a high-throughput strategy to analyze the native assembly kinetics of protein complexes. We apply our approach to characterize the co-assembly for 320 pairs of nucleoporins (NUPs) constituting the ≈50 MDa nuclear pore complex (NPC) in yeast. Some NUPs co-assemble fast via rapid exchange whereas others require lengthy maturation steps. This reveals a hierarchical principle of NPC biogenesis where individual subcomplexes form on a minute timescale and then co-assemble from center to periphery in a ∼1 h-long maturation process. Intriguingly, the NUP Mlp1 stands out as joining very late and associating preferentially with aged NPCs. Our approach is readily applicable beyond the NPC, making it possible to analyze the intracellular dynamics of a variety of multiprotein assemblies.


Assuntos
Substâncias Macromoleculares/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem , Bioensaio , Cinética , Modelos Biológicos , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
6.
Annu Rev Biochem ; 88: 725-783, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30883195

RESUMO

The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.


Assuntos
Modelos Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Eucariotos/metabolismo , Eucariotos/ultraestrutura , Humanos , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/química , Conformação Proteica , Subunidades Proteicas , RNA Mensageiro/metabolismo
7.
Cell ; 179(3): 671-686.e17, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626769

RESUMO

The molecular events that direct nuclear pore complex (NPC) assembly toward nuclear envelopes have been conceptualized in two pathways that occur during mitosis or interphase, respectively. In gametes and embryonic cells, NPCs also occur within stacked cytoplasmic membrane sheets, termed annulate lamellae (AL), which serve as NPC storage for early development. The mechanism of NPC biogenesis at cytoplasmic membranes remains unknown. Here, we show that during Drosophila oogenesis, Nucleoporins condense into different precursor granules that interact and progress into NPCs. Nup358 is a key player that condenses into NPC assembly platforms while its mRNA localizes to their surface in a translation-dependent manner. In concert, Microtubule-dependent transport, the small GTPase Ran and nuclear transport receptors regulate NPC biogenesis in oocytes. We delineate a non-canonical NPC assembly mechanism that relies on Nucleoporin condensates and occurs away from the nucleus under conditions of cell cycle arrest.


Assuntos
Proteínas de Drosophila/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Oogênese , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
8.
Cell ; 174(1): 202-217.e9, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958108

RESUMO

Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-π interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to ∼500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFPNTR variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Mutagênese Sítio-Dirigida , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Propriedades de Superfície
9.
Annu Rev Biochem ; 86: 637-657, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28471691

RESUMO

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with ß-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.


Assuntos
Membrana Celular/ultraestrutura , Clatrina/química , Complexo I de Proteína do Envoltório/química , Vesículas Revestidas/ultraestrutura , Células Eucarióticas/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/química , Transporte Ativo do Núcleo Celular , Membrana Celular/química , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Vesículas Revestidas/química , Vesículas Revestidas/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Evolução Molecular , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Expressão Gênica , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos
10.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28426242

RESUMO

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Fímbrias Bacterianas/ultraestrutura , Poro Nuclear/química , Imagem Óptica/métodos , Células Procarióticas/ultraestrutura , Archaea/metabolismo , Archaea/ultraestrutura , Bactérias/metabolismo , Bactérias/ultraestrutura , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica/história , Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/história , Tomografia com Microscopia Eletrônica/instrumentação , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , História do Século XX , História do Século XXI , Modelos Moleculares , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Imagem Óptica/história , Imagem Óptica/instrumentação , Células Procarióticas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
11.
Cell ; 171(4): 904-917.e19, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29033133

RESUMO

Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture.


Assuntos
Poro Nuclear/química , Saccharomyces cerevisiae/citologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Biogênese de Organelas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838666

RESUMO

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Adenosina , Núcleo Celular , Neurogênese , Neurônios , Proteína I de Ligação a Poli(A) , RNA Circular , RNA , RNA Circular/metabolismo , RNA Circular/genética , Neurônios/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Animais , RNA/metabolismo , RNA/genética , Linhagem Celular , Diferenciação Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
13.
Cell ; 167(7): 1839-1852.e21, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984731

RESUMO

Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation.


Assuntos
Interferometria/métodos , Imagem Individual de Molécula/métodos , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Humanos , Imageamento Tridimensional/métodos
14.
Cell ; 167(5): 1215-1228.e25, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839866

RESUMO

The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Fúngicas , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , RNA Mensageiro , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/ultraestrutura
15.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984722

RESUMO

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Assuntos
Metformina/farmacologia , Acil-CoA Desidrogenase/genética , Envelhecimento , Animais , Tamanho Corporal , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Humanos , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitocôndrias/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Poro Nuclear/metabolismo , Fosforilação Oxidativa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
16.
Mol Cell ; 83(18): 3283-3302.e5, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738963

RESUMO

Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.


Assuntos
Poro Nuclear , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Membrana Transportadoras
17.
Mol Cell ; 82(20): 3856-3871.e6, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220102

RESUMO

To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that basket formation is dependent on RNA polymerase II transcription and subsequent mRNP processing. We further show that while all NPCs can bind Mlp1, baskets assemble only on a subset of nucleoplasmic NPCs, and these basket-containing NPCs associate a distinct protein and RNA interactome. Taken together, our data point toward NPC heterogeneity and an RNA-dependent mechanism for functionalization of NPCs in budding yeast through nuclear basket assembly.


Assuntos
Poro Nuclear , Saccharomycetales , Poro Nuclear/genética , Poro Nuclear/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteômica , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
18.
Mol Cell ; 81(1): 153-165.e7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33333016

RESUMO

Cellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an ∼50 MDa assembly comprised of ∼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics. We discovered that, although all Nups display uniformly slow turnover, their exchange rates vary considerably. Surprisingly, this exchange rate was relatively unrelated to each Nup's position, accessibility, or role in transport but correlated with its structural role; scaffold-forming Nups exchange slowly, whereas flexible connector Nups threading throughout the NPC architecture exchange more rapidly. Targeted perturbations in the NPC structure revealed a dynamic resilience to damage. Our approach opens a new window into macromolecular assembly dynamics.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
19.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33838103

RESUMO

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Citoplasma/genética , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/classificação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32645368

RESUMO

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Assuntos
Calcineurina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Biotinilação , Centrossomo/metabolismo , Simulação por Computador , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Monoéster Fosfórico Hidrolases/química , Fosforilação , Mapas de Interação de Proteínas , Proteoma/metabolismo , Receptor Notch1/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA