Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 203: 111792, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333009

RESUMO

High-quality products in sustainable agriculture require both limited health risks and sufficient dietary nutrients. Phosphorus (P) as a finite and non-renewable resource is widely used in agriculture, usually exerting influence on the accumulation of heavy metals (HMs) in soil and crops. The present research explores, for the first time, the combined effects of long-term P fertilizer and repeated zinc (Zn) application in field on the human health risks and nutritional yield regarding trace elements in maize grain. A field experiment was conducted using maize with six P application rates (0, 12.5, 25, 50, 100, and 200 kg P ha-1) and two Zn application rates (0 and 11.4 kg Zn ha-1). The results showed that the concentrations of Zn, copper (Cu), and lead (Pb) in the maize grain were significantly affected by P application and can be further affected by Zn application. The concentrations of chromium (Cr) and arsenic (As) showed opposite tendency as affected by P fertilizer rates while did not affected by additional Zn application. Zn application decreased the cadmium (Cd) concentration at high P levels and Pb concentration at low P levels, particularly. No HMs contamination or direct health risk was found in maize grain after receiving long-term P and repeated Zn fertilizer. The threshold hazard quotient of an individual and all investigated HMs in this study were acceptable for human digestion of maize grain. While the carcinogenic risk of Cr was non-negligible in case of maize was taken as one of daily staple food for local residents. Combination use of P (25 kg ha-1) and Zn fertilizer on maize enhanced its nutritional supply ability regarding Zn and Cu, and simultaneously mitigated potential human health risks associated with Cd and Pb.


Assuntos
Metais Pesados , Poluentes do Solo , Agricultura , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Fósforo , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays
2.
Sci Total Environ ; 783: 147039, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33872909

RESUMO

In sustainable agriculture, sufficient crop yields and nutrients must be produced while maintaining environmental protection. Considering the role of phosphorus (P) fertilizer in influencing crops yield and environmental security, life cycle assessment was used to examine the environmental impacts of long-term P application on the grain yield and nutritional quality of winter wheat and summer maize. Thus, a long-term field experiment with six P application rates for winter wheat (0, 25, 50, 100, 200, and 400 kg P ha-1) and summer maize (0, 12.5, 25, 50, 100, and 200 kg P ha-1) was conducted on the North China Plain (NCP). The results showed that the cradle-to-farm gate eutrophication potential (EP), energy depletion (ED), and P depletion (PD) were significantly affected by the P application rate applied in winter wheat and summer maize production. The critical P rate required to ensure food security for wheat and maize was in line with the optimal rate for sustainable environmental development in terms of grain production and nutrient levels. On the NCP, the ED and PD of summer maize with optimized P management over 10 years were less than those of winter wheat regardless of using yield or nutrient level as the functional unit. However, the EP of the nutrient supply in winter wheat was less than that in summer maize under optimized P fertilization. The specific nutritional components that limited improvements in environment of wheat and maize production under the optimal P rate were energy (calories) and protein, respectively. In conclusion, in a multifunctional winter wheat-summer maize rotation system, optimized P fertilization (50 kg ha-1 for winter wheat and 25 kg ha-1 for summer maize) combined with the planting of high-yield wheat varieties and high-protein maize varieties showed great potential to reduce the environmental impacts of wheat and maize production.


Assuntos
Triticum , Zea mays , Agricultura , Animais , China , Fertilizantes , Estágios do Ciclo de Vida , Nitrogênio/análise , Rotação , Solo
3.
Front Plant Sci ; 11: 589692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329651

RESUMO

In many regions of the world, human nutrition is still characterized by an insufficient intake of essential nutrients like minerals such as iron (Fe) and zinc (Zn). In view of decreasing resources and a growing world population, the efficiency and the sustainability of cultivation systems should be considered not only in terms of crop yield and profit margin but also in terms of the yield of essential nutrients. Tomatoes are the most consumed vegetable in the world. Organic outdoor tomato cultivation is generally characterized by a higher diversity of varieties and lower fertilization input compared to conventional production. A 2-year field experiment with a set of 20 cultivars was performed to evaluate their variation regarding fruit mineral concentrations [potassium (K), calcium (Ca), magnesium (Mg), phosphorous (P), Fe, and Zn], their contribution to the dietary reference intake (DRI), and the nutritional yields (adults ha-1 year-1). Results show that mineral concentrations differed significantly by cultivar and by year. However, even though significant genotype-by-year effects appear, several cultivars exhibit high genotype stability across years for the single traits studied. Taking this together with medium-to-high heritability, genetics strongly controls most studied traits. Among the cultivars, the contribution of 100 g fresh fruits varied from 4.5 to 7.7% for K, 0.8 to 1.8% for Ca, 2.3 to 4.4% for Mg, 3 to 6.6% for P, 3.1 to 6.9% for Fe, and 1.9 to 4.2% for Zn to meet daily requirements. Based on average fruit yields per hectare, the cultivars varied with regard to the nutritional yields for all the studied minerals, but most strongly for Fe (44-120 adults ha-1 year-1) and Zn (22-84 adults ha-1 year-1). In terms of contribution to the DRI and nutritional yield for Fe, the cocktail cultivar "Bartelly F1" produced the highest results, while for Zn the salad cultivar "Bocati F1" showed the highest values. Our results show that the targeted use of tomato biodiversity in organic outdoor production can be suitable to achieve high fruit yields as well as to produce high nutritional yields per unit area, thus contributing to more effective land use and improved food security. These findings also provide valuable insights for tomato breeders to improve the tomato fruit quality while maintaining yield.

4.
Data Brief ; 30: 105602, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32382611

RESUMO

To construct this database, we integrate the nutritional content of 62 crops and 5 livestock categories to estimate the amount of 21 macro and micro-nutrients (including energy) that were produced from agriculture in each Brazilian municipality during the last three decades. Additionally, we allocate these nutrients according to their share in the food system (for example, human food, animal feed, export etc.). It is a unique data source on macro and micro-nutrients availability for human consumption and animal feed, but also regarding another aspects of the food system, such as international agricultural trade, energy production (for example, in the form of ethanol) or post-harvest and post-processing losses, from local to national levels, in a wide time frame of 30 years. This database can be used in scientific research regarding food and nutrition security and in the construction of indicators for monitoring food and agricultural programs and policies that aim at the promotion of food and nutritional security. Also, it has the potential to enable broader analysis of the food system as whole in terms of food stability and resilience.

5.
Foods ; 5(4)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28231184

RESUMO

The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha-1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated "balanced genotypes" for the four minerals and for the aforementioned characteristics. Selection and breeding of such "balanced genotypes" may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA