Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.395
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39096911

RESUMO

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.

2.
Proc Natl Acad Sci U S A ; 121(6): e2309333121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289951

RESUMO

We present improved estimates of air-sea CO2 exchange over three latitude bands of the Southern Ocean using atmospheric CO2 measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2 measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2 data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science 374, 1275-1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθe surfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air-sea CO2 exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2 observations.

3.
Proc Natl Acad Sci U S A ; 121(30): e2309686121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024115

RESUMO

Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.


Assuntos
Linfócitos B , Proliferação de Células , NF-kappa B , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , NF-kappa B/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética
4.
Immunol Rev ; 309(1): 8-11, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770708

RESUMO

Pandemics have devastating effects that can be mitigated with the existence of global infrastructure for pandemic preparedness along with the adaptation of existing research studies and establishment of biorepositories early in an outbreak. Observational cohort studies in place prior to a pandemic, that are rapidly scalable in response to emerging infectious diseases, are essential for both the early pandemic response and evaluation of its long-term effects. The ability to quickly collect and share samples from convalescent individuals is also critical for the development of vaccines and therapeutics. We provide a reflection on key lessons learned from establishing a longitudinal observational cohort study during the SARS-CoV-2 pandemic in order to provide guidance for future pandemic preparedness.


Assuntos
COVID-19 , Pandemias , Estudos de Coortes , Surtos de Doenças , Humanos , Estudos Observacionais como Assunto , Pandemias/prevenção & controle , SARS-CoV-2
5.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38102949

RESUMO

Dual-process theories propose that recognition memory involves recollection and familiarity; however, the impact of motor expertise on memory recognition, especially the interplay between familiarity and recollection, is relatively unexplored. This functional magnetic resonance imaging study used videos of a dancer performing International Latin Dance Styles as stimuli to investigate memory recognition in professional dancers and matched controls. Participants observed and then reported whether they recognized dance actions, recording the level of confidence in their recollections, whereas blood-oxygen-level-dependent signals measured encoding and recognition processes. Professional dancers showed higher accuracy and hit rates for high-confidence judgments, whereas matched controls exhibited the opposite trend for low-confidence judgments. The right putamen and precentral gyrus showed group-based moderation effects, especially for high-confidence (vs. low-confidence) action recognition in professional dancers. During action recognition, the right superior temporal gyrus and insula showed increased activation for accurate recognition and high-confidence retrieval, particularly in matched controls. These findings highlighting enhanced action memory of professional dancers-evident in their heightened recognition confidence-not only supports the dual-processing model but also underscores the crucial role of expertise-driven familiarity in bolstering successful recollection. Additionally, they emphasize the involvement of the action observation network and frontal brain regions in facilitating detailed encoding linked to intention processing.


Assuntos
Imageamento por Ressonância Magnética , Reconhecimento Psicológico , Humanos , Reconhecimento Psicológico/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Lobo Temporal , Rememoração Mental/fisiologia
6.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679481

RESUMO

Increasingly, in the field of communication, education, and business, people are switching to video interaction, and interlocutors frequently complain that the perception of nonverbal information and concentration suffer. We investigated this issue by analyzing electroencephalogram (EEG) oscillations of the sensorimotor (mu rhythm) and visual (alpha rhythm) cortex of the brain in an experiment with action observation live and on video. The mu rhythm reflects the activity of the mirror neuron system, and the occipital alpha rhythm shows the level of visual attention. We used 32-channel EEG recorded during live and video action observation in 83 healthy volunteers. The ICA method was used for selecting the mu- and alpha-components; the Fourier Transform was used to calculate the suppression index relative to the baseline (stationary demonstrator) of the rhythms. The main range of the mu rhythm was indeed sensitive to social movement and was highly dependent on the conditions of interaction-live or video. The upper mu-range appeared to be less sensitive to the conditions, but more sensitive to different movements. The alpha rhythm did not depend on the type of movement; however, a live performance initially caused a stronger concentration of visual attention. Thus, subtle social and nonverbal perceptions may suffer in remote video interactions.


Assuntos
Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Eletroencefalografia/métodos , Atenção/fisiologia , Córtex Visual/fisiologia , Ritmo alfa/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa/métodos
7.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101921

RESUMO

Observers with autism spectrum disorders (ASDs) find it difficult to read intentions from movements. However, the computational bases of these difficulties are unknown. Do these difficulties reflect an intention readout deficit, or are they more likely rooted in kinematic (dis-)similarities between typical and ASD kinematics? We combined motion tracking, psychophysics, and computational analyses to uncover single-trial intention readout computations in typically developing (TD) children (n = 35) and children with ASD (n = 35) who observed actions performed by TD children and children with ASD. Average intention discrimination performance was above chance for TD observers but not for ASD observers. However, single-trial analysis showed that both TD and ASD observers read single-trial variations in movement kinematics. TD readers were better able to identify intention-informative kinematic features during observation of TD actions; conversely, ASD readers were better able to identify intention-informative features during observation of ASD actions. Crucially, while TD observers were generally able to extract the intention information encoded in movement kinematics, those with autism were unable to do so. These results extend existing conceptions of mind reading in ASD by suggesting that intention reading difficulties reflect both an interaction failure, rooted in kinematic dissimilarity between TD and ASD kinematics (at the level of feature identification), and an individual readout deficit (at the level of information extraction), accompanied by an overall reduced sensitivity of intention readout to single-trial variations in movement kinematics.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Adolescente , Transtorno Autístico , Criança , Desenvolvimento Infantil , Cognição , Compreensão/fisiologia , Emoções/fisiologia , Humanos , Intenção , Movimento/fisiologia
8.
Proc Natl Acad Sci U S A ; 119(10): e2115955119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238661

RESUMO

SignificanceStep-bunching instability (SBI) is one of the interfacial instabilities driven by self-organization of elementary step flow associated with crystal-growth dynamics, which has been observed in diverse crystalline materials. However, despite theoretical suggestions of its presence, no direct observations of SBI for simple melt growth have been achieved so far. Here, with the aid of a type of optical microscope and its combination with a two-beam interferometer, we realized quantitative in situ observations of the spatiotemporal dynamics of the SBI. This enables us to examine the origin of the SBI at the level of the step-step interaction. We also found that the SBI spontaneously induces a highly stable spiral growth mode, governing the late stage of the growth process.

9.
J Neurosci ; 43(48): 8219-8230, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37798129

RESUMO

Actions can be planned and recognized at different hierarchical levels, ranging from very specific (e.g., to swim backstroke) to very broad (e.g., locomotion). Understanding the corresponding neural representation is an important prerequisite to reveal how our brain flexibly assigns meaning to the world around us. To address this question, we conducted an event-related fMRI study in male and female human participants in which we examined distinct representations of observed actions at the subordinate, basic and superordinate level. Using multiple regression representational similarity analysis (RSA) in predefined regions of interest, we found that the three different taxonomic levels were best captured by patterns of activations in bilateral lateral occipitotemporal cortex (LOTC), showing the highest similarity with the basic level model. A whole-brain multiple regression RSA revealed that information unique to the basic level was captured by patterns of activation in dorsal and ventral portions of the LOTC and in parietal regions. By contrast, the unique information for the subordinate level was limited to bilateral occipitotemporal cortex, while no single cluster was obtained that captured unique information for the superordinate level. The behaviorally established action space was best captured by patterns of activation in the LOTC and superior parietal cortex, and the corresponding neural patterns of activation showed the highest similarity with patterns of activation corresponding to the basic level model. Together, our results suggest that occipitotemporal cortex shows a preference for the basic level model, with flexible access across the subordinate and the basic level.SIGNIFICANCE STATEMENT The human brain captures information at varying levels of abstraction. It is debated which brain regions host representations across different hierarchical levels, with some studies emphasizing parietal and premotor regions, while other studies highlight the role of the lateral occipitotemporal cortex (LOTC). To shed light on this debate, here we examined the representation of observed actions at the three taxonomic levels suggested by Rosch et al. (1976) Our results highlight the role of the LOTC, which hosts a shared representation across the subordinate and the basic level, with the highest similarity with the basic level model. These results shed new light on the hierarchical organization of observed actions and provide insights into the neural basis underlying the basic level advantage.


Assuntos
Lobo Occipital , Lobo Temporal , Humanos , Masculino , Feminino , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Lobo Parietal , Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos/fisiologia
10.
J Neurosci ; 43(36): 6330-6341, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37582627

RESUMO

People often align their behaviors and decisions with others' expectations, especially those of higher social positions, when they are being observed. However, little attention has been paid to the neural mechanisms underlying increased conformity to the social hierarchy under social observation. Using a preference rating task, we investigated whether and how individual preferences for novel stimuli were influenced by others' preferences by manipulating others' social hierarchy and observational context. The behavioral results showed that human participants of both sexes were more likely to change their preferences to match those of a superior partner in a public than in a private context. fMRI data revealed distinct contributions of the subregions of the medial prefrontal cortex (mPFC) to increased conformity to social hierarchy under observation. Specifically, the ventral mPFC showed increased activity when participants' preferences aligned with those of superior partners, regardless of behavioral manifestation. The rostral mPFC showed increased activity when conforming to a superior partner and nonconforming to an inferior one, indicating goal-dependent valuation. The dorsal mPFC showed increased activity in private conditions with a superior partner but only in those with a higher tendency to conform. These findings support the hierarchical allostatic regulation model of the mPFC function for social valuation and suggest strategic conformity as a way to minimize metabolic costs.SIGNIFICANCE STATEMENT This study revealed distinct roles of subregions of the mPFC in increased conformity to individuals of different social ranks under observation. Specifically, the ventral mPFC showed increased activity when participants' preferences aligned with those of higher-ranking partners, whereas the rostral mPFC showed increased activity when conforming to a superior partner and nonconforming to an inferior partner, indicating goal-dependent valuation. The dorsal mPFC was more active in private conditions with a superior partner but only in those with a higher tendency to conform. These findings support the hierarchical allostatic regulation model of the mPFC function for social valuation and suggest strategic conformity as a way to minimize metabolic costs.


Assuntos
Hierarquia Social , Córtex Pré-Frontal , Masculino , Feminino , Humanos , Córtex Pré-Frontal/fisiologia , Comportamento Social , Atenção , Imageamento por Ressonância Magnética
11.
J Neurosci ; 43(1): 125-141, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36347621

RESUMO

The human action observation network (AON) encompasses brain areas consistently engaged when we observe other's actions. Although the core nodes of the AON are present from childhood, it is not known to what extent they are sensitive to different action features during development. Because social cognitive abilities continue to mature during adolescence, the AON response to socially-oriented actions, but not to object-related actions, may differ in adolescents and adults. To test this hypothesis, we scanned with functional magnetic resonance imaging (fMRI) male and female typically-developing teenagers (n = 28; 13 females) and adults (n = 25; 14 females) while they passively watched videos of manual actions varying along two dimensions: sociality (i.e., directed toward another person or not) and transitivity (i.e., involving an object or not). We found that action observation recruited the same fronto-parietal and occipito-temporal regions in adults and adolescents. The modulation of voxel-wise activity according to the social or transitive nature of the action was similar in both groups of participants. Multivariate pattern analysis, however, revealed that decoding accuracies in intraparietal sulcus (IPS)/superior parietal lobe (SPL) for both sociality and transitivity were lower for adolescents compared with adults. In addition, in the lateral occipital temporal cortex (LOTC), generalization of decoding across the orthogonal dimension was lower for sociality only in adolescents. These findings indicate that the representation of the content of others' actions, and in particular their social dimension, in the adolescent AON is still not as robust as in adults.SIGNIFICANCE STATEMENT The activity of the action observation network (AON) in the human brain is modulated according to the purpose of the observed action, in particular the extent to which it involves interaction with an object or with another person. How this conceptual representation of actions is implemented during development is largely unknown. Here, using multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data, we discovered that, while the action observation network is in place in adolescence, the fine-grain organization of its posterior regions is less robust than in adults to decode the abstract social dimensions of an action. This finding highlights the late maturation of social processing in the human brain.


Assuntos
Mapeamento Encefálico , Lobo Occipital , Adulto , Humanos , Masculino , Adolescente , Feminino , Criança , Mapeamento Encefálico/métodos , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Lobo Parietal/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
12.
J Neurosci ; 43(49): 8487-8503, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37833066

RESUMO

Beta activity is thought to play a critical role in sensorimotor processes. However, little is known about how activity in this frequency band develops. Here, we investigated the developmental trajectory of sensorimotor beta activity from infancy to adulthood. We recorded EEG from 9-month-old, 12-month-old, and adult humans (male and female) while they observed and executed grasping movements. We analyzed "beta burst" activity using a novel method that combines time-frequency decomposition and principal component analysis. We then examined the changes in burst rate and waveform motifs along the selected principal components. Our results reveal systematic changes in beta activity during action execution across development. We found a decrease in beta burst rate during movement execution in all age groups, with the greatest decrease observed in adults. Additionally, we identified three principal components that defined waveform motifs that systematically changed throughout the trial. We found that bursts with waveform shapes closer to the median waveform were not rate-modulated, whereas those with waveform shapes further from the median were differentially rate-modulated. Interestingly, the decrease in the rate of certain burst motifs occurred earlier during movement and was more lateralized in adults than in infants, suggesting that the rate modulation of specific types of beta bursts becomes increasingly refined with age.SIGNIFICANCE STATEMENT We demonstrate that, like in adults, sensorimotor beta activity in infants during reaching and grasping movements occurs in bursts, not oscillations like thought traditionally. Furthermore, different beta waveform shapes were differentially modulated with age, including more lateralization in adults. Aberrant beta activity characterizes various developmental disorders and motor difficulties linked to early brain injury, so looking at burst waveform shape could provide more sensitivity for early identification and treatment of affected individuals before any behavioral symptoms emerge. More generally, comparison of beta burst activity in typical versus atypical motor development will also be instrumental in teasing apart the mechanistic functional roles of different types of beta bursts.


Assuntos
Lesões Encefálicas , Movimento , Adulto , Lactente , Humanos , Masculino , Feminino , Sensação , Ritmo beta
13.
J Neurosci ; 43(45): 7700-7711, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37871963

RESUMO

Seeing social touch triggers a strong social-affective response that involves multiple brain networks, including visual, social perceptual, and somatosensory systems. Previous studies have identified the specific functional role of each system, but little is known about the speed and directionality of the information flow. Is this information extracted via the social perceptual system or from simulation from somatosensory cortex? To address this, we examined the spatiotemporal neural processing of observed touch. Twenty-one human participants (seven males) watched 500-ms video clips showing social and nonsocial touch during electroencephalogram (EEG) recording. Visual and social-affective features were rapidly extracted in the brain, beginning at 90 and 150 ms after video onset, respectively. Combining the EEG data with functional magnetic resonance imaging (fMRI) data from our prior study with the same stimuli reveals that neural information first arises in early visual cortex (EVC), then in the temporoparietal junction and posterior superior temporal sulcus (TPJ/pSTS), and finally in the somatosensory cortex. EVC and TPJ/pSTS uniquely explain EEG neural patterns, while somatosensory cortex does not contribute to EEG patterns alone, suggesting that social-affective information may flow from TPJ/pSTS to somatosensory cortex. Together, these findings show that social touch is processed quickly, within the timeframe of feedforward visual processes, and that the social-affective meaning of touch is first extracted by a social perceptual pathway. Such rapid processing of social touch may be vital to its effective use during social interaction.SIGNIFICANCE STATEMENT Seeing physical contact between people evokes a strong social-emotional response. Previous research has identified the brain systems responsible for this response, but little is known about how quickly and in what direction the information flows. We demonstrated that the brain processes the social-emotional meaning of observed touch quickly, starting as early as 150 ms after the stimulus onset. By combining electroencephalogram (EEG) data with functional magnetic resonance imaging (fMRI) data, we show for the first time that the social-affective meaning of touch is first extracted by a social perceptual pathway and followed by the later involvement of somatosensory simulation. This rapid processing of touch through the social perceptual route may play a pivotal role in effective usage of touch in social communication and interaction.


Assuntos
Percepção do Tato , Tato , Humanos , Masculino , Afeto/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia , Imageamento por Ressonância Magnética , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia , Feminino
14.
Neuroimage ; 289: 120561, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428551

RESUMO

Previous studies of vicarious touch suggest that we automatically simulate observed touch experiences in our own body representation including primary and secondary somatosensory cortex (SCx). However, whether these early sensory areas are activated in a reflexive manner and the extent with which such SCx activations represent touch qualities, like texture, remains unclear. We measured event-related potentials (ERPs) of SCx's hierarchical processing stages, which map onto successive somatosensory ERP components, to investigate the timing of vicarious touch effects. In the first experiment, participants (n = 43) merely observed touch or no-touch to a hand; in the second, participants saw different touch textures (soft foam and hard rubber) either touching a hand (other-directed) or they were instructed that the touch was self-directed and to feel the touch. Each touch sequence was followed by a go/no-go task. We probed SCx activity and isolated SCx vicarious touch activations from visual carry over effects. We found that vicarious touch conditions (touch versus no-touch and soft versus hard) did not modulate early sensory ERP components (i.e. P50, N80); but we found effects on behavioural responses to the subsequent go/no-go stimulus consistent with post-perceptual effects. When comparing other- with self-directed touch conditions, we found that early and mid-latency components (i.e. P50, N80, P100, N140) were modulated consistent with early SCx activations. Importantly, these early sensory activations were not modulated by touch texture. Therefore, SCx is purposely recruited when participants are instructed to attend to touch; but such activation only situates, rather than fully simulates, the seen tactile experience in SCx.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Potenciais Evocados/fisiologia , Mãos , Pele , Eletroencefalografia
15.
Neuroimage ; 296: 120687, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871038

RESUMO

Even though actions we observe in everyday life seem to unfold in a continuous manner, they are automatically divided into meaningful chunks, that are single actions or segments, which provide information for the formation and updating of internal predictive models. Specifically, boundaries between actions constitute a hub for predictive processing since the prediction of the current action comes to an end and calls for updating of predictions for the next action. In the current study, we investigated neural processes which characterize such boundaries using a repertoire of complex action sequences with a predefined probabilistic structure. Action sequences consisted of actions that started with the hand touching an object (T) and ended with the hand releasing the object (U). These action boundaries were determined using an automatic computer vision algorithm. Participants trained all action sequences by imitating demo videos. Subsequently, they returned for an fMRI session during which the original action sequences were presented in addition to slightly modified versions thereof. Participants completed a post-fMRI memory test to assess the retention of original action sequences. The exchange of individual actions, and thus a violation of action prediction, resulted in increased activation of the action observation network and the anterior insula. At U events, marking the end of an action, increased brain activation in supplementary motor area, striatum, and lingual gyrus was indicative of the retrieval of the previously encoded action repertoire. As expected, brain activation at U events also reflected the predefined probabilistic branching structure of the action repertoire. At T events, marking the beginning of the next action, midline and hippocampal regions were recruited, reflecting the selected prediction of the unfolding action segment. In conclusion, our findings contribute to a better understanding of the various cerebral processes characterizing prediction during the observation of complex action repertoires.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Desempenho Psicomotor/fisiologia
16.
Neuroimage ; 297: 120702, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909762

RESUMO

Contextual information may shape motor resonance and support intention understanding during observation of incomplete, ambiguous actions. It is unclear, however, whether this effect is contingent upon kinematics ambiguity or contextual information is continuously integrated with kinematics to predict the overarching action intention. Moreover, a differentiation between the motor mapping of the intention suggested by context or kinematics has not been clearly demonstrated. In a first action execution phase, 29 participants were asked to perform reaching-to-grasp movements towards big or small food objects with the intention to eat or to move; electromyography from the First Dorsal Interosseous (FDI) and Abductor Digiti Minimi (ADM) was recorded. Depending on object size, the intentions to eat or to move were differently implemented by a whole-hand or a precision grip kinematics, thus qualifying an action-muscle dissociation. Then, in a following action prediction task, the same participants were asked to observe an actor performing the same actions and to predict his/her intention while motor resonance was assessed for the same muscles. Of note, videos were interrupted at early or late action phases, and actions were embedded in contexts pointing toward an eating or a moving intention, congruently or incongruently with kinematics. We found greater involvement of the FDI or ADM in the execution of precision or whole-hand grips, respectively. Crucially, this pattern of activation was mirrored during observation of the same actions in congruent contexts, but it was cancelled out or reversed in the incongruent ones, either when videos were interrupted at either early or long phases of action deployment. Our results extend previous evidence by showing that contextual information shapes motor resonance not only under conditions of perceptual uncertainty but also when more informative kinematics is available.


Assuntos
Eletromiografia , Estimulação Magnética Transcraniana , Humanos , Fenômenos Biomecânicos/fisiologia , Feminino , Masculino , Adulto , Adulto Jovem , Intenção , Músculo Esquelético/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Antecipação Psicológica/fisiologia , Potencial Evocado Motor/fisiologia , Movimento/fisiologia , Atividade Motora/fisiologia
17.
Hum Brain Mapp ; 45(11): e26762, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037079

RESUMO

Hierarchical models have been proposed to explain how the brain encodes actions, whereby different areas represent different features, such as gesture kinematics, target object, action goal, and meaning. The visual processing of action-related information is distributed over a well-known network of brain regions spanning separate anatomical areas, attuned to specific stimulus properties, and referred to as action observation network (AON). To determine the brain organization of these features, we measured representational geometries during the observation of a large set of transitive and intransitive gestures in two independent functional magnetic resonance imaging experiments. We provided evidence for a partial dissociation between kinematics, object characteristics, and action meaning in the occipito-parietal, ventro-temporal, and lateral occipito-temporal cortex, respectively. Importantly, most of the AON showed low specificity to all the explored features, and representational spaces sharing similar information content were spread across the cortex without being anatomically adjacent. Overall, our results support the notion that the AON relies on overlapping and distributed coding and may act as a unique representational space instead of mapping features in a modular and segregated manner.


Assuntos
Mapeamento Encefálico , Gestos , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Fenômenos Biomecânicos/fisiologia , Adulto , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Estimulação Luminosa/métodos , Sensibilidade e Especificidade
18.
Hum Brain Mapp ; 45(10): e26786, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994692

RESUMO

Whether in performing arts, sporting, or everyday contexts, when we watch others move, we tend to enjoy bodies moving in synchrony. Our enjoyment of body movements is further enhanced by our own prior experience with performing those movements, or our 'embodied experience'. The relationships between movement synchrony and enjoyment, as well as embodied experience and movement enjoyment, are well known. The interaction between enjoyment of movements, synchrony, and embodiment is less well understood, and may be central for developing new approaches for enriching social interaction. To examine the interplay between movement enjoyment, synchrony, and embodiment, we asked participants to copy another person's movements as accurately as possible, thereby gaining embodied experience of movement sequences. Participants then viewed other dyads performing the same or different sequences synchronously, and we assessed participants' recognition of having performed these sequences, as well as their enjoyment of each movement sequence. We used functional near-infrared spectroscopy to measure cortical activation over frontotemporal sensorimotor regions while participants performed and viewed movements. We found that enjoyment was greatest when participants had mirrored the sequence and recognised it, suggesting that awareness of embodiment may be central to enjoyment of synchronous movements. Exploratory analyses of relationships between cortical activation and enjoyment and recognition implicated the sensorimotor cortices, which subserve action observation and aesthetic processing. These findings hold implications for clinical research and therapies seeking to foster successful social interaction.


Assuntos
Conscientização , Prazer , Córtex Sensório-Motor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Conscientização/fisiologia , Prazer/fisiologia , Desempenho Psicomotor/fisiologia , Interação Social , Movimento/fisiologia , Atividade Motora/fisiologia
19.
Small ; 20(21): e2308001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100205

RESUMO

Y3Al5O12:Ce (YAG:Ce) phosphors are extensively used in the field of white light-emitting diodes (LEDs) due to their efficient luminescent properties. To optimize the performance of YAG:Ce phosphors, a comprehensive understanding of their synthesis and structural evolution is essential. This paper presents a direct in situ transmission electron microscopy (TEM) /scanning TEM (STEM) investigation on the transformation process of a precursor comprising nanocrystalline CeO2 dispersed in an amorphous Y-Al oxide matrix into crystalline YAG:Ce particles. The study reveals that nanocrystalline CeO2 particles dissolve completely in the Y-Al oxide matrix at a temperature above 900 °C, while YAlO3 (YAP)-type crystalline particles with Al2O3 phase in grain boundaries are observed above 1000 °C. Finally, YAG:Ce-type crystalline particles are formed above 1180 °C. Atomic-resolution energy-dispersive X-ray spectroscopy (EDS) elemental mapping demonstrates that the doped cerium (Ce) atoms occupy the same atomic sites as yttrium (Y). Photoluminescence measurements validate the efficient luminescent properties of the obtained YAG:Ce phosphor.

20.
Magn Reson Med ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056341

RESUMO

PURPOSE: This study proposes faster virtual observation point (VOP) compression as well as post-processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP-based SAR calculation. METHODS: The proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post-processing algorithm is used to post-process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared. RESULTS: The new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post-processing is applied. CONCLUSION: The new algorithms are much faster than previous algorithms. Post-processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA