RESUMO
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Assuntos
Células-Tronco Adultas/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas/fisiologia , Mucosa Olfatória/metabolismo , Regeneração/fisiologia , Retina/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Orelha Interna/citologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Regeneração/genética , Retina/citologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismoRESUMO
While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.
Assuntos
Linfócitos B , Plasmócitos , Animais , Camundongos , Linfócitos T , Imunoglobulinas , Encéfalo , Imunidade nas Mucosas , Anticorpos AntiviraisRESUMO
Horizontal basal cells (HBCs) residing within severely damaged olfactory epithelium (OE) mediate OE regeneration by differentiating into odorant-detecting olfactory sensory neurons (OSNs) and other tissue supporting non-neuronal cell types. Depending on both tissue type and integrity, the Notch signaling pathway can either positively or negatively regulate resident stem cell activity. Although Notch1 specifies HBC dormancy in the uninjured OE, little is known about how HBCs are influenced by the Notch pathway following OE injury. Here, we show that HBCs depend on a functional inversion of the Notch pathway to appropriately mediate OE regeneration. At 24â h post-injury, HBCs enhance Notch1-mediated signaling. Moreover, at 3â days post-injury when the regenerating OE is composed of multiple cell layers, HBCs enrich both Notch1 and the Notch ligand, Dll1. Notably, HBC-specific Notch1 knockout increases HBC quiescence and impairs HBC differentiation into neuronal progenitors and OSNs. Interestingly, complete HBC knockout of Dll1 only decreases differentiation of HBC-derived OSNs. These data underscore the context-dependent nature of Notch signaling. Furthermore, they reveal that HBCs regulate their own neurogenic potential after OE injury.
Assuntos
Mucosa Olfatória , Neurônios Receptores Olfatórios , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Neurogênese/fisiologia , Diferenciação Celular/fisiologia , Células-TroncoRESUMO
Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.
Assuntos
Inflamação , Mucosa Olfatória , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Perfilação da Expressão Gênica , Inflamação/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismoRESUMO
Smell and taste are extensively studied in fish species as essential for finding food and selecting mates while avoiding toxic substances and predators. Depending on the evolutionary position and adaptation, a discrete variation in the morphology of these sense organs has been reported in numerous teleost species. Here, for the first time, we approach the phenotypic characterization of the olfactory epithelium and taste buds in the African turquoise killifish (Nothobranchius furzeri), a model organism known for its short lifespan and use in ageing research. Our observations indicate that the olfactory epithelium of N. furzeri is organized as a simple patch, lacking the complex folding into a rosette, with an average size of approximately 600 µm in length, 300 µm in width, and 70 µm in thickness. Three main cytotypes, including olfactory receptor neurons (CalbindinD28K), supporting cells (ß-tubulin IV), and basal cells (Ki67), were identified across the epithelium. Further, we determined the taste buds' distribution and quantification between anterior (skin, lips, oral cavity) and posterior (gills, pharynx, oesophagus) systems. We identified the key cytotypes by using immunohistochemical markers, i.e. CalbindinD28K, doublecortin, and neuropeptide Y (NPY) for gustatory receptor cells, glial fibrillary acidic protein (GFAP) for supporting cells, and Ki67, a marker of cellular proliferation for basal cells. Altogether, these results indicate that N. furzeri is a microsmatic species with unique taste and olfactory features and possesses a well-developed posterior taste system compared to the anterior. This study provides fundamental insights into the chemosensory biology of N. furzeri, facilitating future investigations into nutrient-sensing mechanisms and their roles in development, survival, and ageing.
RESUMO
PURPOSE OF REVIEW: Neurogenesis occurring in the olfactory epithelium is critical to continuously replace olfactory neurons to maintain olfactory function, but is impaired during chronic type 2 and non-type 2 inflammation of the upper airways. In this review, we describe the neurobiology of olfaction and the olfactory alterations in chronic rhinosinusitis with nasal polyps (type 2 inflammation) and post-viral acute rhinosinusitis (non-type 2 inflammation), highlighting the role of immune response attenuating olfactory neurogenesis as a possibly mechanism for the loss of smell in these diseases. RECENT FINDINGS: Several studies have provided relevant insights into the role of basal stem cells as direct participants in the progression of chronic inflammation identifying a functional switch away from a neuro-regenerative phenotype to one contributing to immune defense, a process that induces a deficient replacement of olfactory neurons. The interaction between olfactory stem cells and immune system might critically underlie ongoing loss of smell in type 2 and non-type 2 inflammatory upper airway diseases. In this review, we describe the neurobiology of olfaction and the olfactory alterations in type 2 and non-type 2 inflammatory upper airway diseases, highlighting the role of immune response attenuating olfactory neurogenesis, as a possibly mechanism for the lack of loss of smell recovery.
Assuntos
Transtornos do Olfato , Rinite , Sinusite , Humanos , Olfato/fisiologia , Anosmia/metabolismo , Inflamação/metabolismo , Mucosa Olfatória/metabolismo , Doença CrônicaRESUMO
BACKGROUND: Olfactory impairment has been reported in patients with depression and in rodent models of depression. Olfactory epithelium (OE) is the only peripheral neural tissue connected to the brain that has the potential for self-renewal. We hypothesized the olfactory deficit during depression may be related to the dysfunction of OE progenitor cells. The aim of the present study was therefore to evaluate the expansion and neuronal differentiation potency of cultured OE progenitor cells obtained from a rat model of depression. METHODS: Rats were exposed to chronic unpredictable mild stress procedures to establish a depressive-like state. Depressive-like behavior and olfactory sensing function were then evaluated and compared with control rats. Primary OE progenitor cells were cultured in vitro. The proliferation potency and survival of OE progenitor cells were assessed by 5-Ethynyl-2'-deoxyuridine staining and Cell Counting Kit-8 (CCK8), respectively, while cellular apoptosis was measured by flow cytometry. The neuronal differentiation potency of OE progenitor cells was evaluated by measurement of the protein and mRNA level of ß-3 tubulin, a marker of neural cells. mRNA expression associated with neural stemness was examined by quantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Depressive-like rats showed decreased olfactory function. OE progenitor cells from depressive-like rats showed reduced cell proliferation/survival and neuronal differentiation potency. Moreover, OE progenitor cells from depressive-like rats showed decreased expression of mRNA related to neural stemness. CONCLUSIONS: These results indicate the impaired function of OE progenitor cells may contribute to the olfactory deficit observed during depression. The OE may therefore provide a window for the study of depression.
Assuntos
Depressão , Mucosa Olfatória , Humanos , Ratos , Animais , Mucosa Olfatória/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , RNA Mensageiro/metabolismo , Células CultivadasRESUMO
BACKGROUND: The olfactory cleft (OC) is the most important anatomical site for the maintenance of olfactory function. Obstruction of airflow in the OC by various conditions, such as inflammation, leads to poor olfactory function. Therefore, it is important to increase OC airflow while performing endoscopic sinus surgery (ESS). However, no technique to increase airflow has yet been established. METHODS: We designed a superior turbinate lateralization (STL) procedure that displaces the entire ST bone laterally by eliminating the connection between the posterior ST and the anterior wall of the sphenoid sinus. The effect of the STL procedure was investigated in terms of anatomy and olfactory function. RESULTS: ESS with the STL procedure was performed on seven patients with chronic rhinosinusitis and nasal polyps. The cross-sectional area of the OC at 3 months postoperatively was significantly larger than that before ESS. In addition, the Open Essence test and questionnaires revealed significantly improvements in sense of smell. Airflow in the OC was significantly higher in STL procedure group than in the non-STL procedure group. CONCLUSION: The STL procedure enlarges the bony framework of the OC, and by increasing OC airflow, facilitates the transport of odorants to the olfactory epithelium, thereby improving olfactory perception.
Assuntos
Endoscopia , Pólipos Nasais , Olfato , Conchas Nasais , Humanos , Conchas Nasais/cirurgia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Endoscopia/métodos , Olfato/fisiologia , Pólipos Nasais/cirurgia , Pólipos Nasais/fisiopatologia , Pólipos Nasais/complicações , Sinusite/cirurgia , Sinusite/fisiopatologia , Rinite/cirurgia , Rinite/fisiopatologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/cirurgia , Doença Crônica , Resultado do TratamentoRESUMO
The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.
Assuntos
Canais Iônicos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Papilas Gustativas/metabolismo , Calbindina 2/metabolismo , Mucosa Olfatória/metabolismoRESUMO
The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.
Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mucosa Olfatória/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , HumanosRESUMO
Olfactory neuroblastoma (ONB, esthesioneuroblastoma) is a sinonasal cancer with an underdeveloped diagnostic toolkit, and is the subject of many incidents of tumor misclassification throughout the literature. Despite its name, connections between the cancer and normal cells of the olfactory epithelium have not been systematically explored and markers of olfactory epithelial cell types are not deployed in clinical practice. Here, we utilize an integrated human-mouse single-cell atlas of the nasal mucosa, including the olfactory epithelium, to identify transcriptomic programs that link ONB to a specific population of stem/progenitor cells known as olfactory epithelial globose basal cells (GBCs). Expression of a GBC transcription factor NEUROD1 distinguishes both low- and high-grade ONB from sinonasal undifferentiated carcinoma, a potential histologic mimic with a distinctly unfavorable prognosis. Furthermore, we identify a reproducible subpopulation of highly proliferative ONB cells expressing the GBC stemness marker EZH2, suggesting that EZH2 inhibition may play a role in the targeted treatment of ONB. Finally, we study the cellular states comprising ONB parenchyma using single-cell transcriptomics and identify evidence of a conserved GBC transcriptional regulatory circuit that governs divergent neuronal-versus-sustentacular differentiation. These results link ONB to a specific cell type for the first time and identify conserved developmental pathways within ONB that inform diagnostic, prognostic, and mechanistic investigation.
Assuntos
Estesioneuroblastoma Olfatório , Neoplasias Nasais , Neoplasias dos Seios Paranasais , Humanos , Camundongos , Animais , Estesioneuroblastoma Olfatório/diagnóstico , Estesioneuroblastoma Olfatório/metabolismo , Estesioneuroblastoma Olfatório/patologia , Neoplasias dos Seios Paranasais/patologia , Neurônios/patologia , Neoplasias Nasais/genética , Neoplasias Nasais/diagnóstico , Cavidade Nasal/metabolismo , Cavidade Nasal/patologiaRESUMO
The olfactory epithelium undergoes constant neurogenesis throughout life in mammals. Several factors including key signaling pathways and inflammatory microenvironment regulate the maintenance and regeneration of the olfactory epithelium. In this study, we identify TMEM59 (also known as DCF1) as a critical regulator to the epithelial maintenance and regeneration. Single-cell RNA-Seq data show downregulation of TMEM59 in multiple epithelial cell lineages with aging. Ablation of TMEM59 leads to apparent alteration at the transcriptional level, including genes associated with olfactory transduction and inflammatory/immune response. These differentially expressed genes are key components belonging to several signaling pathways, such as NF-κB, chemokine, etc. TMEM59 deletion impairs olfactory functions, attenuates proliferation, causes loss of both mature and immature olfactory sensory neurons, and promotes infiltration of inflammatory cells, macrophages, microglia cells and neutrophils into the olfactory epithelium and lamina propria. TMEM59 deletion deteriorates regeneration of the olfactory epithelium after injury, with significant reduction in the number of proliferative cells, immature and mature sensory neurons, accompanied by the increasing number of inflammatory cells and macrophages. Anti-inflammation by dexamethasone recovers neuronal generation and olfactory functions in the TMEM59-KO animals, suggesting the correlation between TMEM59 and inflammation in regulating the epithelial maintenance. Collectively, TMEM59 regulates olfactory functions, as well as neuronal generation in the olfactory epithelium via interaction with inflammation, suggesting a potential role in therapy against olfactory dysfunction associated with inflamm-aging.
Assuntos
Neurônios Receptores Olfatórios , Animais , Mucosa Olfatória/metabolismo , Inflamação/metabolismo , Neurogênese , NF-kappa B/metabolismo , MamíferosRESUMO
In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.
RESUMO
Olfaction is fundamental for sensing environmental chemicals and has obvious adaptive advantages. In fish, the peripheral olfactory organ is composed of lamellae in which the olfactory mucosa contains three main categories of olfactory sensory neurons (OSNs) as follows: ciliated (cOSNs), microvillous (mOSNs), and crypt cells. We studied the appearance of these different OSNs during development of Poecilia reticulata, given its growing use as animal model system. We performed immunohistochemical detection of molecular markers specific for the different OSNs, carrying out image analyses for marked-cell counting and measuring optical density. The P. reticulata olfactory organ did not show change in size during the first weeks of life. The proliferative activity increased at the onset of secondary sexual characters, remaining high until sexual maturity. Then, it decreased in both sexes, but with a recovery in females, probably in relation to their almost double body growth, compared to males. The density of both cOSNs and mOSNs remained constant throughout development, probably due to conserved functions already active in the fry, independently of the sex. The density of calretinin-positive crypt cells decreased progressively until sexual maturity, whereas the increased density of calretinin-negative crypt cell fraction, prevailing in later developmental stages, indicated their probable involvement in reproductive activities.
Assuntos
Neurônios Receptores Olfatórios , Poecilia , Animais , Feminino , Masculino , Calbindina 2 , Mucosa OlfatóriaRESUMO
BACKGROUND: Ray-finned fishes (Actinopterygii) perceive their environment through a range of sensory modalities, including olfaction. Anatomical diversity of the olfactory organ suggests that olfaction is differentially important among species. To explore this topic, we studied the evolutionary dynamics of the four main gene families (OR, TAAR, ORA/VR1 and OlfC/VR2) coding for olfactory receptors in 185 species of ray-finned fishes. RESULTS: The large variation in the number of functional genes, between 28 in the ocean sunfish Mola mola and 1317 in the reedfish Erpetoichthys calabaricus, is the result of parallel expansions and contractions of the four main gene families. Several ancient and independent simplifications of the olfactory organ are associated with massive gene losses. In contrast, Polypteriformes, which have a unique and complex olfactory organ, have almost twice as many olfactory receptor genes as any other ray-finned fish. CONCLUSIONS: We document a functional link between morphology of the olfactory organ and richness of the olfactory receptor repertoire. Further, our results demonstrate that the genomic underpinning of olfaction in ray-finned fishes is heterogeneous and presents a dynamic pattern of evolutionary expansions, simplifications, and reacquisitions.
Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Evolução Molecular , Peixes/anatomia & histologia , Peixes/genética , Genoma , Filogenia , Receptores Odorantes/genéticaRESUMO
The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.
Assuntos
Quitinases/metabolismo , Inflamação/metabolismo , Mucosa Olfatória/fisiologia , Regeneração/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos TransgênicosRESUMO
BACKGROUND: Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid-base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. RESULTS: We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. CONCLUSION: F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment.
Assuntos
Bass , Transcriptoma , Animais , Bass/genética , Dióxido de Carbono/farmacologia , Homeostase , Concentração de Íons de Hidrogênio , Oceanos e Mares , Mucosa Olfatória , Água do MarRESUMO
The olfactory epithelium (OE) possesses unique lifelong neuroregenerative capacities and undergoes constitutive neurogenesis throughout mammalian lifespan. Two populations of stem cells, frequently dividing globose basal cells (GBCs) and quiescent horizontal basal cells (HBCs), readily replace olfactory neurons throughout lifetime. Although lineage commitment and neuronal differentiation of stem cells has already been described in terms of transcription factor expression, little is known about external factors balancing between differentiation and self-renewal. We show here that expression of the CXC-motif chemokine receptor 4 (CXCR4) distinguishes both types of stem cells. Extensive colocalization analysis revealed exclusive expression of CXCR4 in proliferating GBCs and their neuronal progenies. Moreover, only neuronal lineage cells were derived from CXCR4-CreER-tdTomato reporter mice in the OE. Furthermore, Cre-tdTomato mice specific for HBCs (Nestin+ and Cytokeratin14+) did not reduce CXCR4 expression when bred to mice bearing floxed CXCR4 alleles, and did not show labeling of the neuronal cells. CXCR4 and its ligand CXCL12 were markedly upregulated upon induction of GBC proliferation during injury-induced regeneration. in vivo overexpression of CXCL12 did downregulate CXCR4 levels, which results in reduced GBC maintenance and neuronal differentiation. We proved that these effects were caused by CXCR4 downregulation rather than over-activation by showing that the phenotypes of CXCL12-overexpressing mice were highly similar to the phenotypes of CXCR4 knockout mice. Our results demonstrate functional CXCR4 signaling in GBCs regulates cell cycle exit and neural differentiation. We propose that CXCR4/CXCL12 signaling is an essential regulator of olfactory neurogenesis and provide new insights into the dynamics of neurogenesis in the OE.
Assuntos
Quimiocina CXCL12/genética , Regeneração Nervosa/genética , Neurogênese/genética , Nervo Olfatório/crescimento & desenvolvimento , Receptores CXCR4/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Queratina-14/genética , Camundongos , Camundongos Knockout , Nestina/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Mucosa Olfatória/crescimento & desenvolvimento , Mucosa Olfatória/lesões , Nervo Olfatório/metabolismoRESUMO
Xenobiotic-metabolizing enzymes (XMEs) expressed in the olfactory epithelium (OE) are known to metabolize odorants. Aldehyde oxidase (AOX) recognizes a wide range of substrates among which are substrates with aldehyde groups. Some of these AOX substrates are odorants, such as benzaldehyde and n-octanal. One of the mouse AOX isoforms, namely AOX2 (mAOX2), was shown to be specifically expressed in mouse OE but its role to metabolize odorants in this tissue remains unexplored. In this study, we investigated the involvement of mouse AOX isoforms in the oxidative metabolism of aldehyde-odorants in the OE. Mouse OE extracts effectively metabolized aromatic and aliphatic aldehyde-odorants. Gene expression analysis revealed that not only mAOX2 but also the mAOX3 isoform is expressed in the OE. Furthermore, evaluation of inhibitory effects using the purified recombinant enzymes led us to identify specific inhibitors of each isoform, namely chlorpromazine, 17ß-estradiol, menadione, norharmane, and raloxifene. Using these specific inhibitors, we defined the contribution of mAOX2 and mAOX3 to the metabolism of aldehyde-odorants in the mouse OE. Taken together, these findings demonstrate that mAOX2 and mAOX3 are responsible for the oxidation of aromatic and aliphatic aldehyde-odorants in the mouse OE, implying their involvement in odor perception.
Assuntos
Aldeído Oxidase/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Aldeído Oxirredutases/antagonistas & inibidores , Aldeídos/química , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mucosa Olfatória/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Olfato/efeitos dos fármacosRESUMO
In the main olfactory epithelium (MOE), new olfactory sensory neurons (OSNs) are persistently generated to replace lost neurons throughout an organism's lifespan. This process predominantly depends on the proliferation of globose basal cells (GBCs), the actively dividing stem cells in the MOE. Here, by using CRISPR/Cas9 and RNAi coupled with adeno-associated virus (AAV) nose delivery approaches, we demonstrated that knockdown of miR-200b/a in the MOE resulted in supernumerary Mash1-marked GBCs and decreased numbers of differentiated OSNs, accompanied by abrogation of male behaviors. We further showed that in the MOE, miR-200b/a targets the ten-eleven translocation methylcytosine dioxygenase TET3, which cooperates with RE1-silencing transcription factor (REST) to exert their functions. Deficiencies including proliferation, differentiation, and behaviors illustrated in miR-200b/a knockdown mice were rescued by suppressing either TET3 or REST. Our work describes a mechanism of coordination of GBC proliferation and differentiation in the MOE and olfactory male behaviors through miR-200/TET3/REST signaling.