Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(1-2): 344-357.e15, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224782

RESUMO

The bacterial Mfd ATPase is increasingly recognized as a general transcription factor that participates in the resolution of transcription conflicts with other processes/roadblocks. This function stems from Mfd's ability to preferentially act on stalled RNA polymerases (RNAPs). However, the mechanism underlying this preference and the subsequent coordination between Mfd and RNAP have remained elusive. Here, using a novel real-time translocase assay, we unexpectedly discovered that Mfd translocates autonomously on DNA. The speed and processivity of Mfd dictate a "release and catch-up" mechanism to efficiently patrol DNA for frequently stalled RNAPs. Furthermore, we showed that Mfd prevents RNAP backtracking or rescues a severely backtracked RNAP, allowing RNAP to overcome stronger obstacles. However, if an obstacle's resistance is excessive, Mfd dissociates the RNAP, clearing the DNA for other processes. These findings demonstrate a remarkably delicate coordination between Mfd and RNAP, allowing efficient targeting and recycling of Mfd and expedient conflict resolution.


Assuntos
Proteínas de Bactérias/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , DNA/genética , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fatores de Transcrição/genética , Terminação da Transcrição Genética
2.
Proc Natl Acad Sci U S A ; 121(39): e2402162121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292741

RESUMO

Liquid-like protein condensates have recently attracted much attention due to their critical roles in biological phenomena. They typically show high fluidity and reversibility for exhibiting biological functions, while occasionally serving as sites for the formation of amyloid fibrils. To comprehend the properties of protein condensates that underlie biological function and pathogenesis, it is crucial to study them at the single-condensate level; however, this is currently challenging due to a lack of applicable methods. Here, we demonstrate that optical trapping is capable of inducing the formation of a single liquid-like condensate of α-synuclein in a spatiotemporally controlled manner. The irradiation of tightly focused near-infrared laser at an air/solution interface formed a condensate under conditions coexisting with polyethylene glycol. The fluorescent dye-labeled imaging showed that the optically induced condensate has a gradient of protein concentration from the center to the edge, suggesting that it is fabricated through optical pumping-up of the α-synuclein clusters and the expansion along the interface. Furthermore, Raman spectroscopy and thioflavin T fluorescence analysis revealed that continuous laser irradiation induces structural transition of protein molecules inside the condensate to ß-sheet rich structure, ultimately leading to the condensate deformation and furthermore, the formation of amyloid fibrils. These observations indicate that optical trapping is a powerful technique for examining the microscopic mechanisms of condensate appearance and growth, and furthermore, subsequent aging leading to amyloid fibril formation.


Assuntos
Amiloide , Pinças Ópticas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Amiloide/química , Amiloide/metabolismo , Humanos , Análise Espectral Raman/métodos
3.
Proc Natl Acad Sci U S A ; 119(33): e2206513119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939666

RESUMO

Nucleosome DNA unwrapping and its disassembly into hexasomes and tetrasomes is necessary for genomic access and plays an important role in transcription regulation. Previous single-molecule mechanical nucleosome unwrapping revealed a low- and a high-force transitions, and force-FRET pulling experiments showed that DNA unwrapping is asymmetric, occurring always first from one side before the other. However, the assignment of DNA segments involved in these transitions remains controversial. Here, using high-resolution optical tweezers with simultaneous single-molecule FRET detection, we show that the low-force transition corresponds to the undoing of the outer wrap of one side of the nucleosome (∼27 bp), a process that can occur either cooperatively or noncooperatively, whereas the high-force transition corresponds to the simultaneous unwrapping of ∼76 bp from both sides. This process may give rise stochastically to the disassembly of nucleosomes into hexasomes and tetrasomes whose unwrapping/rewrapping trajectories we establish. In contrast, nucleosome rewrapping does not exhibit asymmetry. To rationalize all previous nucleosome unwrapping experiments, it is necessary to invoke that mechanical unwrapping involves two nucleosome reorientations: one that contributes to the change in extension at the low-force transition and another that coincides but does not contribute to the high-force transition.


Assuntos
DNA , Nucleossomos , Imagem Individual de Molécula , Animais , DNA/química , Transferência Ressonante de Energia de Fluorescência , Nucleossomos/química , Pinças Ópticas , Imagem Individual de Molécula/métodos , Xenopus laevis
4.
Proc Natl Acad Sci U S A ; 119(16): e2122990119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35394901

RESUMO

While crystallization is a ubiquitous and an important process, the microscopic picture of crystal nucleation is yet to be established. Recent studies suggest that the nucleation process can be more complex than the view offered by the classical nucleation theory. Here, we implement single crystal nucleation spectroscopy (SCNS) by combining Raman microspectroscopy and optical trapping induced crystallization to spectroscopically investigate one crystal nucleation at a time. Raman spectral evolution during a single glycine crystal nucleation from water, measured by SCNS and analyzed by a nonsupervised spectral decomposition technique, uncovered the Raman spectrum of prenucleation aggregates and their critical role as an intermediate species in the dynamics. The agreement between the spectral feature of prenucleation aggregates and our simulation suggests that their structural order emerges through the dynamic formation of linear hydrogen-bonded networks. The present work provides a strong impetus for accelerating the investigation of crystal nucleation by optical spectroscopy.

5.
Nano Lett ; 24(37): 11661-11668, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39250914

RESUMO

Fluorescent nanodiamonds (FNDs) with nitrogen-vacancy centers are pivotal for advancing quantum photonics and imaging through deterministic quantum state manipulation. However, deterministic integration of quantum emitters into photonic devices remains a challenge due to the need for high coupling efficiency and Purcell enhancement. We report a deterministic FND-integrated nanofocusing device achieved by assembling FNDs at a plasmonic waveguide tip through plasmonic-enhanced optical trapping. This technique not only increases the emission rate by 58.6 times compared to isolated FNDs but also preferentially directs radiation into the waveguide at a rate 5.3 times higher than that into free space, achieving an exceptional figure-of-merit of ∼3000 for efficient energy transfer. Our findings represent a significant step toward deterministic integration in quantum imaging and communication, opening new avenues for quantum technology advancements.

6.
Nano Lett ; 24(40): 12605-12611, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39347809

RESUMO

Single-emitter nanoantennas play a crucial role in the fabrication of nanosensors and integrated sources. Since the coupling of single emitter to nanoantennas is largely based on stochastic methods, low qualified rate still hinders a massive deployment. Here, we proposed a deterministic, optical-force-driven method to achieve gap-plasmonic photoluminescence enhancement. Two deterministic steps are carried out in sequence: a composite nanoemitter is first synthesized by linking quantum dots to a silica-rapped gold nanoparticle, followed by an optical delivery of the nanoparticle into a nanoaperture in a gold film. We reason that the nanoparticle-in-nanoaperture (NPiNA) structure efficiently couples out-of-plane excitation light into a gap-plasmon via a transverse electromagnetic mode (TEM)-like transmission mode. An in situ photoluminescence measurement demonstrates a 3× brightness as compared to the nanoparticle-on-mirror (NPoM). This approach paves the way toward deterministic positioning of individual nanoparticles for a wide range of applications on nanophotonics structures on-a-chip.

7.
Nano Lett ; 24(22): 6753-6760, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708988

RESUMO

Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.

8.
Nano Lett ; 24(19): 5699-5704, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695662

RESUMO

We report the second harmonic generation (SHG) response from a single 34 nm diameter lithium niobate nanoparticle. The experimental setup involves a first beam devoted to the optical trapping of single nanoparticles, whereas a second arm involves a femtosecond laser source leading to the SHG emission from the trapped nanoparticles. SHG operation where one to three nanoparticles are present in the optical trap is first demonstrated, highlighting the transition between coherent and incoherent SHG, the latter known as hyper-Rayleigh scattering (HRS). With a spatial light modulator moving the optical trap in and out of the focus of the femtosecond beam, the SHG intensity is switched back and forth between a low and a high level. This controlled operation opens new avenues for nanoparticle characterization and applications in sensing or communication and information technologies and constitutes the first step in the design of active substrateless metasurfaces.

9.
Rep Prog Phys ; 87(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373355

RESUMO

HoloTile is a patented computer generated holography approach with the aim of reducing the speckle noise caused by the overlap of the non-trivial physical extent of the point spread function in Fourier holographic systems from adjacent frequency components. By combining tiling of phase-only of rapidly generated sub-holograms with a PSF-shaping phase profile, each frequency component-or output 'pixel'- in the Fourier domain is shaped to a desired non-overlapping profile. In this paper, we show the high-resolution, speckle-reduced reconstructions that can be achieved with HoloTile, as well as present new HoloTile modalities, including an expanded list of PSF options with new key properties. In addition, we discuss numerous applications for which HoloTile, its rapid hologram generation, and the new PSF options may be an ideal fit, including optical trapping and manipulation of particles, volumetric additive printing, information transfer and quantum communication.

10.
Small ; 20(25): e2309395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196155

RESUMO

Enantiomers (opposite chiral molecules) usually exhibit different effects when interacting with chiral agents, thus the identification and separation of enantiomers are of importance in pharmaceuticals and agrochemicals. Here an optical approach is proposed to enantioselective trapping of multiple pairs of enantiomers by a focused hybrid polarized beam. Numerical results indicate that such a focused beam shows multiple local optical chirality of opposite signs in the focal plane, and can trap the corresponding enantiomers near the extreme value of optical chirality density according to the handedness of enantiomers. The number and positions of trapped enantiomers can be changed by altering the value and sign of polarization orders of hybrid polarized beams, respectively. The key to realizing enantioselective optical trapping of enantiomers is that the chiral optical force exerted on enantiomers in this focused field is stronger than the achiral optical force. The results provide insight into the optical identification and separation of multiple pairs of enantiomers and will find applications in chiral detection and sensing.

11.
Small ; 20(27): e2308814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282203

RESUMO

There is a recent resurgence of interest in phage therapy (the therapeutic use of bacterial viruses) as an approach to eliminating difficult-to-treat infections. However, existing approaches for therapeutic phage selection and virulence testing are time-consuming, host-dependent, and facing reproducibility issues. Here, this study presents an innovative approach wherein integrated resonant photonic crystal (PhC) cavities in silicon are used as optical nanotweezers for probing and manipulating single bacteria and single virions with low optical power. This study demonstrates that these nanocavities differentiate between a bacterium and a phage without labeling or specific surface bioreceptors. Furthermore, by tailoring the spatial extent of the resonant optical mode in the low-index medium, phage distinction across phenotypically distinct phage families is demonstrated. The work paves the road to the implementation of optical nanotweezers in phage therapy protocols.


Assuntos
Bacteriófagos , Pinças Ópticas , Vírion , Bacteriófagos/fisiologia
12.
Small ; 20(33): e2308534, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38573943

RESUMO

Thermal control at small scales is critical for studying temperature-dependent biological systems and microfluidic processes. Concerning this, optical trapping provides a contactless method to remotely study microsized heating sources. This work introduces a birefringent luminescent microparticle of NaLuF4:Nd3+ as a local heater in a liquid system. When optically trapped with a circularly polarized laser beam, the microparticle rotates and heating is induced through multiphonon relaxation of the Nd3+ ions. The temperature increment in the surrounding medium is investigated, reaching a maximum heating of ≈5 °C within a 30 µm radius around the static particle under 51 mW laser excitation at 790 nm. Surprisingly, this study reveals that the particle's rotation minimally affects the temperature distribution, contrary to the intuitive expectation of liquid stirring. The influence of the microparticle rotation on the reduction of heating transfer is analyzed. Numerical simulations confirm that the thermal distribution remains consistent regardless of spinning. Instead, the orientation-dependence of the luminescence process emerges as a key factor responsible for the reduction in heating. The anisotropy in particle absorption and the lag between the orientation of the particle and the laser polarization angle contribute to this effect. Therefore, caution must be exercised when employing spinning polarization-dependent luminescent particles for microscale thermal analysis using rotation dynamics.

13.
Small ; 20(34): e2312174, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38586919

RESUMO

The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.

14.
Small ; : e2406865, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374027

RESUMO

Myosins are ATP-powered, force-generating motor proteins involved in cardiac and muscle contraction. The external load experienced by the myosins modulates and coordinates their function in vivo. Here, this study investigates the tension-sensing mechanisms of rabbit native ß-cardiac myosin (ßM-II) and slow skeletal myosins (SolM-II) that perform in different physiological settings. Using mobile optical tweezers with a square wave-scanning mode, a range of external assisting and resisting loads from 0 to 15 pN is exerted on single myosin molecules as they interact with the actin filament. Influenced of load on specific strongly-bound states in the cross-bridge cycle is examined by adjusting the [ATP]. The results implies that the detachment kinetics of actomyosin ADP.Pi strongly-bound force-generating state are load sensitive. Low assisting load accelerates, while the resisting load hinders the actomyosin detachment, presumably, by slowing both the Pi and ADP release. However, under both high assisting and resisting load, the rate of actomyosin dissociation decelerates. The transition from actomyosin ADP.Pi to ADP state appears to occur with a higher probability for ßM-II than SolM-II. This study interpret that dissociation of at least three strongly-bound actomyosin states are load-sensitive and may contribute to functional diversity among different myosins.

15.
Chemistry ; 30(53): e202401938, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984590

RESUMO

Nanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g2(0)] and the associated diffusion timescale (τD) of their FCS curves show substantial dependency on pump intensity (IP). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior. This observation is apparently attributed to either photo-brightening or optical trapping, both lead to increased NP occupancy (N) in the excitation volume, consequently reducing the g2(0) amplitude [since g2(0) α 1/N] at high IP. However, an advanced FCS study utilizing alternating laser excitation at two different intensities dismisses such possibilities. Further investigation into single-particle blinking behaviors as a function of IP reveals that the intensity dependence of g2(0) primarily arises from the brightness heterogeneity prevalent in almost all types of NPs. This report delves into the complexities of the photophysical properties of NPs and their adverse impacts on FCS studies.

16.
Photochem Photobiol Sci ; 23(9): 1697-1707, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39214922

RESUMO

This study investigates the promotion of sodium chlorate (NaClO3) crystallization through optical trapping, enhanced by the addition of gold nanoparticles (AuNPs) and silicon nanoparticles (SiNPs). Using a focused laser beam at the air-solution interface of a saturated NaClO3 solution with AuNPs or SiNPs, the aggregates of these particles were formed at the laser focus, the nucleation and growth of metastable NaClO3 (m-NaClO3) crystals were induced. Continued laser irradiation caused these m-NaClO3 crystals to undergo repeated cycles of growth and dissolution, eventually transitioning to a stable crystal form. Our comparative analysis showed that AuNPs, due to their significant heating due to higher photon absorption efficiency, caused more pronounced size fluctuations in m-NaClO3 crystals compared to the stable behavior observed with SiNPs. Interestingly, the maximum diameter of the m-NaClO3 crystals that appeared during the size fluctuation step was consistent, regardless of nanoparticle type, concentration, or size. The crystallization process was also promoted by using polystyrene nanoparticles, which have minimal heating and electric field enhancement, suggesting that the reduction in activation energy for nucleation at the particle surface is a key factor. These findings provide critical insights into the mechanisms of laser-induced crystallization, emphasizing the roles of plasmonic heating, particle surfaces, and optical forces.

17.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117120

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Contração Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular , Tamanho Celular , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismo
18.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273504

RESUMO

In recent years, Raman spectroscopy has garnered growing interest in the field of biomedical research. It offers a non-invasive and label-free approach to defining the molecular fingerprint of immune cells. We utilized Raman spectroscopy on optically trapped immune cells to investigate their molecular compositions. While numerous immune cell types have been studied in the past, the characterization of living human CD3/CD28-stimulated T cell subsets remains incomplete. In this study, we demonstrate the capability of Raman spectroscopy to readily distinguish between naïve and stimulated CD4 and CD8 cells. Additionally, we compared these cells with monocytes and discovered remarkable similarities between stimulated T cells and monocytes. This paper contributes to expanding our knowledge of Raman spectroscopy of immune cells and serves as a launching point for future clinical applications.


Assuntos
Monócitos , Análise Espectral Raman , Subpopulações de Linfócitos T , Humanos , Análise Espectral Raman/métodos , Monócitos/citologia , Monócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Pinças Ópticas , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Antígenos CD28/metabolismo , Antígenos CD28/imunologia
19.
J Biol Chem ; 298(7): 102070, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623390

RESUMO

The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (ß-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular ß-cardiac myosin (ßM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate ßM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in ßM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for ßM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between ßM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.


Assuntos
Miosinas Cardíacas , Cadeias Pesadas de Miosina , Animais , Ventrículos do Coração , Miosina Tipo II , Miosinas , Isoformas de Proteínas , Coelhos , Miosinas Ventriculares
20.
J Exp Bot ; 74(3): 787-799, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36322674

RESUMO

Bacterial attachment on root surfaces is an important step preceding the colonization or internalization and subsequent infection of plants by pathogens. Unfortunately, bacterial attachment is not well understood because the phenomenon is difficult to observe. Here we assessed whether this limitation could be overcome using optical trapping approaches. We have developed a system based on counter-propagating beams and studied its ability to guide Pectobacterium atrosepticum (Pba) cells to different root cell types within the interstices of transparent soils. Bacterial cells were successfully trapped and guided to root hair cells, epidermal cells, border cells, and tissues damaged by laser ablation. Finally, we used the system to quantify the bacterial cell detachment rate of Pba cells on root surfaces following reversible attachment. Optical trapping techniques could greatly enhance our ability to deterministically characterize mechanisms linked to attachment and formation of biofilms in the rhizosphere.


Assuntos
Raízes de Plantas , Solo , Raízes de Plantas/metabolismo , Pinças Ópticas , Bactérias , Plantas , Rizosfera , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA