Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.820
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Biochem Sci ; 46(12): 992-1002, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34303585

RESUMO

Tropospheric ozone (O3) is among the most damaging air pollutant to plants. Plants alter the atmospheric O3 concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O3; and (ii) by dry deposition, which includes diffusion of O3 into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O3. Deposition of O3 into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O3 once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/farmacologia , Ozônio/análise , Ozônio/metabolismo , Ozônio/farmacologia , Folhas de Planta/metabolismo , Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
2.
Annu Rev Microbiol ; 74: 101-116, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905756

RESUMO

Many volatile organic compounds (VOCs) associated with industry cause adverse health effects, but less is known about the physiological effects of biologically produced volatiles. This review focuses on the VOCs emitted by fungi, which often have characteristic moldy or "mushroomy" odors. One of the most common fungal VOCs, 1-octen-3-ol, is a semiochemical for many arthropod species and also serves as a developmental hormone for several fungal groups. Other fungal VOCs are flavor components of foods and spirits or are assayed in indirect methods for detecting the presence of mold in stored agricultural produce and water-damaged buildings. Fungal VOCs function as antibiotics as well as defense and plant-growth-promoting agents and have been implicated in a controversial medical condition known as sick building syndrome. In this review, we draw attention to the ubiquity, diversity, and toxicological significance of fungal VOCs as well as some of their ecological roles.


Assuntos
Fungos/fisiologia , Odorantes , Olfato , Compostos Orgânicos Voláteis/metabolismo , Octanóis/metabolismo , Plantas/microbiologia , Compostos Orgânicos Voláteis/análise
3.
Am J Respir Crit Care Med ; 210(9): 1091-1100, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648186

RESUMO

Rationale: The early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. The analysis of exhaled volatile organic compounds (VOCs) is an emerging approach to identify prognostic and diagnostic biomarkers in pediatric asthma. Objectives: To assess the accuracy of gas chromatography-mass spectrometry-based exhaled metabolite analysis to differentiate between controlled and uncontrolled pediatric asthma. Methods: This study encompassed discovery (SysPharmPediA [Systems Pharmacology Approach to Uncontrolled Paediatric Asthma]) and validation (U-BIOPRED [Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes] and PANDA [Paediatric-Asthma-Non-Invasive-Diagnostic-Approaches]) phases. First, exhaled VOCs that discriminated degrees of asthma control were identified. Subsequently, outcomes were validated in two independent cohorts. Patients were classified as controlled or uncontrolled on the basis of asthma control test scores and the number of severe attacks in the past year. In addition, the potential of VOCs to predict two or more future severe asthma attacks in SysPharmPediA was evaluated. Measurements and Main Results: Complete data were available for 196 children (SysPharmPediA, n = 100; U-BIOPRED, n = 49; PANDA, n = 47). In SysPharmPediA, after randomly splitting the population into training (n = 51) and test (n = 49) sets, three compounds (acetophenone, ethylbenzene, and styrene) distinguished between patients with uncontrolled and controlled asthma. The areas under the receiver operating characteristic curves (AUROCCs) for training and test sets were, respectively, 0.83 (95% confidence interval [CI], 0.65-1.00) and 0.77 (95% CI, 0.58-0.96). Combinations of these VOCs resulted in AUROCCs of 0.74 ± 0.06 (U-BIOPRED) and 0.68 ± 0.05 (PANDA). Attack prediction tests resulted in AUROCCs of 0.71 (95% CI, 0.51-0.91) and 0.71 (95% CI, 0.52-0.90) for the training and test sets. Conclusions: Exhaled metabolite analysis might enable asthma control classification in children. This should stimulate the further development of exhaled metabolite-based point-of-care tests in asthma.


Assuntos
Asma , Biomarcadores , Testes Respiratórios , Compostos Orgânicos Voláteis , Humanos , Asma/metabolismo , Asma/tratamento farmacológico , Compostos Orgânicos Voláteis/análise , Criança , Masculino , Feminino , Testes Respiratórios/métodos , Biomarcadores/análise , Biomarcadores/metabolismo , Adolescente , Expiração , Cromatografia Gasosa-Espectrometria de Massas , Índice de Gravidade de Doença , Pré-Escolar
4.
Am J Respir Crit Care Med ; 210(9): 1079-1090, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889337

RESUMO

The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.


Assuntos
Biomarcadores , Testes Respiratórios , Expiração , Compostos Orgânicos Voláteis , Humanos , Testes Respiratórios/métodos , Biomarcadores/análise , Biomarcadores/metabolismo , Compostos Orgânicos Voláteis/análise , Expiração/fisiologia , Metabolômica/métodos , Pneumopatias/diagnóstico , Pneumopatias/metabolismo
5.
Nano Lett ; 24(33): 10139-10147, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109658

RESUMO

Surface-enhanced Raman scattering (SERS) offers a promising, cost-effective alternative for the rapid, sensitive, and quantitative analysis of potential biomarkers in exhaled gases, which is crucial for early disease diagnosis. However, a major challenge in SERS is the effective detection of gaseous analytes, primarily due to difficulties in enriching and capturing them within the substrate's "hotspot" regions. This study introduces an advanced gas sensor combining mesoporous gold (MesoAu) and metal-organic frameworks (MOFs), exhibiting high sensitivity and rapid detection capabilities. The MesoAu provides abundant active sites and interconnected mesopores, facilitating the diffusion of analytes for detection. A ZIF-8 shell enveloping MesoAu further enriches target molecules, significantly enhancing sensitivity. A proof-of-concept experiment demonstrated a detection limit of 0.32 ppb for gaseous benzaldehyde, indicating promising prospects for the rapid diagnosis of early stage lung cancer. This research also pioneers a novel approach for constructing hierarchical plasmonic nanostructures with immense potential in gas sensing.


Assuntos
Testes Respiratórios , Gases , Ouro , Estruturas Metalorgânicas , Análise Espectral Raman , Estruturas Metalorgânicas/química , Testes Respiratórios/métodos , Ouro/química , Gases/análise , Gases/química , Humanos , Análise Espectral Raman/métodos , Porosidade , Nanoestruturas/química , Benzaldeídos/química , Limite de Detecção , Nanopartículas Metálicas/química
6.
J Infect Dis ; 230(4): 1013-1022, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38885291

RESUMO

BACKGROUND: Many insect-borne pathogens appear to manipulate the odors of their hosts in ways that influence vector behaviors. In our prior work, we identified characteristic changes in volatile emissions of cultured Plasmodium falciparum parasites in vitro and during natural human falciparum malaria. In the current study, we prospectively evaluate the reproducibility of these findings in an independent cohort of children in Blantyre, Malawi. METHODS: We enrolled febrile children under evaluation for malaria and collected breath from children with and without malaria, as well as healthy controls. Using gas chromatography/mass spectrometry, we characterized breath volatiles associated with malaria. By repeated sampling of children with malaria before and after antimalarial use, we determined how breath profiles respond to treatment. In addition, we investigated the stage-specificity of biomarkers through correlation with asexual and sexual-stage parasitemia. RESULTS: Our data provide robust evidence that P. falciparum infection leads to specific, reproducible changes in breath compounds. While no individual compound served as an adequate classifier in isolation, selected volatiles together yielded high sensitivity for diagnosis of malaria. Overall, the results of our predictive models suggest the presence of volatile signatures that reproducibly predict malaria infection status and determine response to therapy, even in cases of low parasitemia.


Assuntos
Antimaláricos , Biomarcadores , Testes Respiratórios , Malária Falciparum , Plasmodium falciparum , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/diagnóstico , Pré-Escolar , Testes Respiratórios/métodos , Feminino , Masculino , Biomarcadores/análise , Antimaláricos/uso terapêutico , Lactente , Estudos Prospectivos , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Malaui , Criança , Cromatografia Gasosa-Espectrometria de Massas , Parasitemia/tratamento farmacológico
7.
J Infect Dis ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781449

RESUMO

OBJECTIVE: The fecal microbiota and metabolome are hypothesized to be altered before late-onset neonatal meningitis (LOM), in analogy to late-onset sepsis (LOS). The present study aimed to identify fecal microbiota composition and volatile metabolomics preceding LOM. METHODS: Cases and gestational age-matched controls were selected from a prospective, longitudinal preterm cohort study (born <30 weeks' gestation) at nine neonatal intensive care units. The microbial composition (16S rRNA sequencing) and volatile metabolome (gas chromatography-ion mobility spectrometry (GC-IMS) and GC-time-of-flight-mass spectrometry (GC-TOF-MS)), were analyzed in fecal samples 1-10 days pre-LOM. RESULTS: Of 1397 included infants, 21 were diagnosed with LOM (1.5%), and 19 with concomitant LOS (90%). Random Forest classification and MaAsLin2 analysis found similar microbiota features contribute to the discrimination of fecal pre-LOM samples versus controls. A Random Forest model based on six microbiota features accurately predicts LOM 1-3 days before diagnosis with an area under the curve (AUC) of 0.88 (n=147). Pattern recognition analysis by GC-IMS revealed an AUC of 0.70-0.76 (P<0.05) in the three days pre-LOM (n=92). No single discriminative metabolites were identified by GC-TOF-MS (n=66). CONCLUSION: Infants with LOM could be accurately discriminated from controls based on preclinical microbiota composition, while alterations in the volatile metabolome were moderately associated with preclinical LOM.

8.
Am J Respir Cell Mol Biol ; 70(5): 392-399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315815

RESUMO

Severe viral lower respiratory tract infection (LRTI), resulting in both acute and long-term pulmonary disease, constitutes a substantial burden among young children. Viral LRTI triggers local oxidative stress pathways by infection and inflammation, and supportive care in the pediatric intensive care unit may further aggravate oxidative injury. The main goal of this exploratory study was to identify and monitor breath markers linked to oxidative stress in children over the disease course of severe viral LRTI. Exhaled breath was sampled during invasive ventilation, and volatile organic compounds (VOCs) were analyzed using gas chromatography and mass spectrometry. VOCs were selected in an untargeted principal component analysis and assessed for change over time. In addition, identified VOCs were correlated with clinical parameters. Seventy breath samples from 21 patients were analyzed. A total of 15 VOCs were identified that contributed the most to the explained variance of breath markers. Of these 15 VOCs, 10 were previously linked to pathways of oxidative stress. Eight VOCs, including seven alkanes and methyl alkanes, significantly decreased from the initial phase of ventilation to the day of extubation. No correlation was observed with the administered oxygen dose, whereas six VOCs showed a poor to strong positive correlation with driving pressure. In this prospective study of children with severe viral LRTI, the majority of VOCs that were most important for the explained variance mirrored clinical improvement. These breath markers could potentially help monitor the pulmonary oxidative status in these patients, but further research with other objective measures of pulmonary injury is required.


Assuntos
Biomarcadores , Testes Respiratórios , Estresse Oxidativo , Infecções Respiratórias , Compostos Orgânicos Voláteis , Humanos , Masculino , Testes Respiratórios/métodos , Feminino , Pré-Escolar , Biomarcadores/metabolismo , Lactente , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Infecções Respiratórias/virologia , Infecções Respiratórias/metabolismo , Criança , Estudos Prospectivos
9.
BMC Plant Biol ; 24(1): 589, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902627

RESUMO

BACKGROUND: The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS: Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased ß-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes ß-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION: Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially ß-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oleaceae , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/anatomia & histologia , Oleaceae/genética , Oleaceae/crescimento & desenvolvimento , Oleaceae/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Odorantes , Compostos Orgânicos Voláteis/metabolismo
10.
BMC Plant Biol ; 24(1): 13, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163882

RESUMO

The ability of a data fusion system composed of a computer vision system (CVS) and an electronic nose (e-nose) was evaluated to predict key physiochemical attributes and distinguish red-fleshed kiwifruit produced in three distinct regions in northern Iran. Color and morphological features from whole and middle-cut kiwifruits, along with the maximum responses of the 13 metal oxide semiconductor (MOS) sensors of an e-nose system, were used as inputs to the data fusion system. Principal component analysis (PCA) revealed that the first two principal components (PCs) extracted from the e-nose features could effectively differentiate kiwifruit samples from different regions. The PCA-SVM algorithm achieved a 93.33% classification rate for kiwifruits from three regions based on data from individual e-nose and CVS. Data fusion increased the classification rate of the SVM model to 100% and improved the performance of Support Vector Regression (SVR) for predicting physiochemical indices of kiwifruits compared to individual systems. The data fusion-based PCA-SVR models achieved validation R2 values ranging from 90.17% for the Brix-Acid Ratio (BAR) to 98.57% for pH prediction. These results demonstrate the high potential of fusing artificial visual and olfactory systems for quality monitoring and identifying the geographical growing regions of kiwifruits.


Assuntos
Algoritmos , Nariz Eletrônico , Inteligência Artificial , Irã (Geográfico)
11.
Small ; 20(40): e2402255, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38837847

RESUMO

The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.

12.
Small ; 20(27): e2308641, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282134

RESUMO

The photonic nose inspired by the olfactory system is an integrated detection platform constructed by multiple sensing units as channels. However, in the detection of volatile organic compounds (VOCs), the sensing results that cannot be directly readable and the poor ability to distinguish analytes with similar chemical properties are the main challenges faced by this sensor. Here, 8 metal-organic frameworks (MOF)-based photonic crystals are used as the basic sensing units to construct a photonic nose detection platform. The microscopic adsorption of VOCs by MOFs enables the photonic crystals (PCs) to produce macroscopic structural color output, and further makes the photonic nose have specific color fingerprints for different VOCs, the response time of all PCs to VOCs can be within 1 s. Through the color fingerprint, the visual identification of VOCs produced by 5 common solvent vapors is realized, and 9 VOCs with similar chemical properties are further distinguished. In addition, the application potential of the photonic nose in the actual environment is verified by identifying different contents of benzene in the paint. It is envisaged that the MOF-based photonic nose has great reference value for the development of intelligent and multi-component synergistic functional gas sensors.

13.
Small ; 20(34): e2400333, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38528427

RESUMO

Redox-active organic compounds gather significant attention for their potential application as electrodes in alkali ion batteries, owing to the structural versatility, environmental friendliness, and cost-effectiveness. However, their practical applications of such compounds are impeded by insufficient active sites with limited capacity, dissolution in electrolytes, and sluggish kinetics. To address these issues, a naphthol group-containing triarylamine polymer, namely poly[6,6'-(phenylazanediyl)bis(naphthol)] (poly(DNap-OH)) is rationally designed and synthesized, via oxidative coupling polymerization. It is capable of endowing favorable steric structures that facilitate fast ion diffusion, excellent chemical stability in organic electrolytes, and additional redox-active sites that enable a bipolar redox reaction. By exploiting these advantages, poly(DNap-OH) cathodes demonstrate remarkable cycling stability in both lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), showcasing enhanced specific capacity and redox reaction kinetics in comparison to the conventional poly(4-methyltriphenylamine) cathodes. Overall, this work offers insights into molecular design strategies for the development of high-performance organic cathodes in alkali-ion batteries.

14.
Small ; : e2402464, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058241

RESUMO

Volatile organic compound (VOC) sensors have a broad range of applications including healthcare monitoring, product quality control, and air quality management. However, many such applications are demanding, requiring sensors with high sensitivity and selectivity. 2D materials are extensively used in many VOC sensing devices due to their large surface-to-volume ratio and fascinating electronic properties. These properties, along with their exceptional flexibility, low power consumption, room-temperature operation, chemical functionalization potential, and defect engineering capabilities, make 2D materials ideal for high-performance VOC sensing. Here, a 2D MoS2/Te heterojunction is reported that significantly improves the VOC detection compared to MoS2 and Te sensors on their own. Density functional theory (DFT) analysis shows that the MoS2/Te heterojunction significantly enhances the adsorption energy and therefore sensing sensitivity of the sensor. The sensor response, which denotes the percentage change in the sensor's conductance upon VOC exposure, is further enhanced under photo-illumination and zero-bias conditions to values up to ≈7000% when exposed to butanone. The MoS2/Te heterojunction is therefore a promising device architecture for portable and wearable sensing applications.

15.
Planta ; 260(3): 66, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080142

RESUMO

MAIN CONCLUSION: Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.


Assuntos
Formigas , Herbivoria , Micorrizas , Folhas de Planta , Solanum tuberosum , Simbiose , Compostos Orgânicos Voláteis , Animais , Micorrizas/fisiologia , Solanum tuberosum/fisiologia , Solanum tuberosum/microbiologia , Formigas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Folhas de Planta/fisiologia , Insetos/fisiologia
16.
Planta ; 259(4): 73, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393405

RESUMO

MAIN CONCLUSION: The transcription factor LiNAC100 has a novel function of regulating floral fragrance by directly regulating linalool synthase gene LiLiS. Lilium 'Siberia', an Oriental hybrid, is renowned as both a cut flower and garden plant, prized for its color and fragrance. The fragrance comprises volatile organic compounds (VOCs), primarily monoterpenes found in the plant. While the primary terpene synthases in Lilium 'Siberia' were identified, the transcriptional regulation of these terpene synthase (TPS) genes remains unclear. Thus, understanding the regulatory mechanisms of monoterpene biosynthesis is crucial for breeding flower fragrance, thereby improving ornamental and commercial values. In this study, we isolated a nuclear-localized LiNAC100 transcription factor from Lilium 'Siberia'. The virus-induced gene silencing (VIGS) of LiNAC100 was found to down-regulate the expression of linalool synthase gene (LiLiS) and significantly inhibit linalool synthesis. Conversely, transient overexpression of LiNAC100 produced opposite effects. Additionally, yeast one-hybrid and dual-luciferase assays confirmed that LiNAC100 directly activates LiLiS expression. Our findings reveal that LiNAC100 plays a key role in monoterpene biosynthesis in Lilium 'Siberia', promoting linalool synthesis through the activation of LiLiS expression. These results offer insights into the molecular mechanisms of terpene biosynthesis in Lilium 'Siberia' and open avenues for biotechnological enhancement of floral scent.


Assuntos
Lilium , Lilium/genética , Lilium/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Monoterpenos Acíclicos/metabolismo , Monoterpenos/metabolismo , Flores/genética , Fatores de Transcrição/genética
17.
Planta ; 259(3): 53, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294549

RESUMO

MAIN CONCLUSION: The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.


Assuntos
Arabidopsis , Botrytis , Hanseniaspora , Ácidos Indolacéticos
18.
Planta ; 260(4): 95, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271529

RESUMO

MAIN CONCLUSION: New findings are presented for Chaerophyllum coloratum L. on the volatile composition of the essential oil, based on data of hydrosol and fresh plant material, light and electron microscopy of leaves, and cytotoxic and antiviral activity. The widespread Apiaceae family includes many well-known and economically important plants that are cultivated as food or spices. Many produce essential oils and are generally a source of secondary metabolites and compounds that have numerous applications in daily life. In this study, the chemical composition of volatile organic compounds (VOCs), ultrastructure and biological activity of the Mediterranean endemic species Cheaerophyllum coloratum L. are investigated, as literature data for this plant species are generally very scarce. The essential oil and hydrosol were extracted from the air-dried leaves by hydrodistillation and the chemical composition of both extracts was analysed by GC-MS in conjunction with headspace solid-phase microextraction (HS-SPME) of VOCs from the hydrosol and the fresh plant material. In the composition of the essential oil, the oxygenated sesquiterpenes spathulenol and caryophyllene oxide were the most abundant components. In the fresh plant material, non-oxygenated sesquiterpenes dominated, with ß-caryophyllene and germacrene D being the main components. The hydrosol was dominated by monoterpenes, with the oxygenated monoterpene p-cymen-8-ol being the most abundant. Light and electron micrographs of the leaf of C. coloratum show secretory structures, and we hypothesize that glandular leaf trichomes, secretory epidermal cells and secretory canals are involved in the production of volatiles and their secretion on the leaf surface. Since the biological potential of C. coloratum is poorly investigated, we tested its cytotoxic activity on cancer and healthy cell lines and its antiviral activity on plants infected with tobacco mosiac virus (TMV). Our results dealing with the composition, ultrastructure and biological activity show that C. coloratum represent a hidden valuable plant species with a potential for future research.


Assuntos
Óleos Voláteis , Folhas de Planta , Compostos Orgânicos Voláteis , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Antivirais/farmacologia , Microextração em Fase Sólida , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo
19.
Appl Environ Microbiol ; 90(10): e0108524, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39287398

RESUMO

This review covers, for the first time, all methods based on the use of Aspergillus strains as biocontrol agents for the management of plant diseases caused by fungi and oomycetes. Atoxigenic Aspergillus strains have been screened in a variety of hosts, such as peanuts, maize kernels, and legumes, during the preharvest and postharvest stages. These strains have been screened against a wide range of pathogens, such as Fusarium, Phytophthora, and Pythium species, suggesting a broad applicability spectrum. The highest efficacies were generally observed when using non-toxigenic Aspergillus strains for the management of mycotoxin-producing Aspergillus strains. The modes of action included the synthesis of antifungal metabolites, such as kojic acid and volatile organic compounds (VOCs), secretion of hydrolytic enzymes, competition for space and nutrients, and induction of disease resistance. Aspergillus strains degraded Sclerotinia sclerotiorum sclerotia, showing high control efficacy against this pathogen. Collectively, although two Aspergillus strains have been commercialized for aflatoxin degradation, a new application of Aspergillus strains is emerging and needs to be optimized.


Assuntos
Aspergillus , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Aspergillus/metabolismo , Antibiose , Agentes de Controle Biológico , Arachis/microbiologia
20.
Mass Spectrom Rev ; 42(5): 1625-1646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34870867

RESUMO

Conservation of historic artifacts has been a multidisciplinary field from its very beginning. Traditionally, it has been and still is associated with the history of art. It applies knowledge from technical and basic sciences, adapting their solutions to its goals. At present, however, a new tendency is clearly emerging-scientific research is starting to play an increasingly important role not only as a service, but also by proposing new solutions both in the traditional conservation areas and in new areas of conservation activities. The above trend opens up new perspectives for the field of preservation of our heritage but may also create new threats. Therefore, the conservators' caution in introducing new technologies should always be justified; after all, they are responsible for the effects of any activities on the historic objects. This, quite selective review, discusses application of mass spectrometry techniques for the detection of various components that are important to the conservators of our heritage with particular focus on paintings. The text also contains some basic knowledge of technical details to introduce the methodology to a broader group of professionals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA