Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Insects ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103158

RESUMO

Over the last few decades, globalization and global trade have increased the risk of the vehiculation of invasive organisms, which has had multiple negative effects, both economic and ecological. Through this study, we aimed to produce a report on the first record of the invasive scale insect Pulvinaria hydrangeae (Stein. 1946) in Brașov County in central Romania. It was found on two native tree species: sycamore (Acer pseudoplatanus) and linden (Tilia cordata). In this paper, we (i) highlight the list of possible hosts, (ii) provide a general outlook on infestations and (iii) review the control options for this particular pest. Because early detection and quick reporting are the most important actions in the successful management of invasive species, in general, we also provide a synthetic morphological description of the adult female specimens and ovisacs. Due to natural occurrence, our findings highlight the potential risks posed by the infestation of this insect to native tree species belonging to the Acer and Tilia genera. Because of the temperate climate in Romania and the fact that females are wingless, the new infestations will probably be made through the vehiculation of infested plants, rather than through natural spreading. However, because of global warming, the chances of this species surviving during the winter are likely to increase, making northern expansion of the cottony hydrangea scale feasible.

2.
PeerJ ; 5: e3923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093995

RESUMO

BACKGROUND: Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis in vitro require understanding the principles of their self-assembly in vivo. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into Artemia franciscana (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. RESULTS: EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of A. franciscana. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. CONCLUSIONS: The ovisac lining of A. franciscana is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of A. franciscana. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing Artemia as feed for fish farming. We propose Artemia ovisacs as an in vivo model system for studying mesostructure formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA