Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(4): 1194-1206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321589

RESUMO

Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dano ao DNA , Reparo do DNA , Motivos de Aminoácidos , Apoptose , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
2.
Plant Physiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991558

RESUMO

Cytosolic invertase (CIN) in plants hydrolyzes sucrose into fructose and glucose, influencing flowering time and organ development. However, the underlying molecular mechanisms remain elusive. Through expressional, genetic, and histological analyses, we identified a substantially role of SlCIN2 (localized in mitochondria) in regulating flowering and pollen development in tomato (Solanum lycopersicum). The overexpression of SlCIN2 resulted in increased hexose accumulation and decreased sucrose and starch content. Our findings indicated that SlCIN2 interacts with Sucrose transporter2 (SlSUT2) to inhibit the sucrose transport activity of SlSUT2, thereby suppressing sucrose content in flower buds and delaying flowering. We found that higher levels of glucose in SlCIN2-overexpressing anthers result in the accumulation of abscisic acid (ABA) and reactive oxygen species (ROS), thereby disrupting programmed cell death (PCD) in anthers and delaying the end of tapetal degradation. Exogenous sucrose partially restored fertility in SlCIN2-overexpressing plants. This study revealed the mechanism by which SlCIN2 regulates pollen development and demonstrated a strategy for creating sugar-regulated gene male sterility lines for tomato hybrid seed production.

3.
Apoptosis ; 29(3-4): 277-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38001342

RESUMO

Breast cancer is a prevalent and severe form of cancer that affects women all over the world. The incidence and mortality of breast cancer continue to rise due to factors such as population growth and the aging of the population. There is a growing area of research focused on a cell death mechanism known as PANoptosis. This mechanism is primarily regulated by the PANoptosome complex and displays important characteristics of cell death, including pyroptosis, apoptosis, and/or necroptosis, without being strictly defined by the cell death pathway. PANoptosis acts as a defensive response to external stimuli and pathogens, contributing to the maintenance of cellular homeostasis and overall stability. Increasing evidence suggests that programmed cell death (PCD) plays an important role in the development of breast cancer, and PANoptosis, as a novel form of PCD, may be a crucial factor in the development of breast cancer, potentially leading to the identification of new therapeutic strategies. Therefore, the concept of PANoptosis not only deepens our understanding of PCD, but also opens up new avenues for treating malignant diseases, including breast cancer. This review aims to provide an overview of the definition of PANoptosis, systematically explore the interplay between PANoptosis and various forms of PCD, and discuss its implications for breast cancer. Additionally, it delves into the current progress and future directions of PANoptosis research in the context of breast cancer, establishing a theoretical foundation for the development of molecular targets within critical signaling pathways related to PANoptosis, as well as multi-target combination therapy approaches, with the goal of inducing PANoptosis as part of breast cancer treatment.


Assuntos
Apoptose , Neoplasias da Mama , Feminino , Humanos , Apoptose/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Morte Celular , Piroptose/genética , Envelhecimento
4.
Am J Hum Genet ; 108(7): 1318-1329, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077761

RESUMO

TP73 belongs to the TP53 family of transcription factors and has therefore been well studied in cancer research. Studies in mice, however, have revealed non-oncogenic activities related to multiciliogenesis. Utilizing whole-exome sequencing analysis in a cohort of individuals with a mucociliary clearance disorder and cortical malformation, we identified homozygous loss-of-function variants in TP73 in seven individuals from five unrelated families. All affected individuals exhibit a chronic airway disease as well as a brain malformation consistent with lissencephaly. We performed high-speed video microscopy, immunofluorescence analyses, and transmission electron microscopy in respiratory epithelial cells after spheroid or air liquid interface culture to analyze ciliary function, ciliary length, and number of multiciliated cells (MCCs). The respiratory epithelial cells studied display reduced ciliary length and basal bodies mislocalized within the cytoplasm. The number of MCCs is severely reduced, consistent with a reduced number of cells expressing the transcription factors crucial for multiciliogenesis (FOXJ1, RFX2). Our data demonstrate that autosomal-recessive deleterious variants in the TP53 family member TP73 cause a mucociliary clearance disorder due to a defect in MCC differentiation.


Assuntos
Lisencefalia/genética , Depuração Mucociliar/genética , Mucosa Respiratória/metabolismo , Proteína Tumoral p73/genética , Diferenciação Celular/genética , Células Cultivadas , Ciliopatias/genética , Genes Recessivos , Homozigoto , Humanos , Mutação com Perda de Função , Microscopia de Vídeo , Mucosa Respiratória/citologia , Mucosa Respiratória/ultraestrutura , Sequenciamento do Exoma
5.
Biochem Biophys Res Commun ; 735: 150428, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39094231

RESUMO

Primary ciliary dyskinesia (PCD) is a group of genetically heterogeneous disorders characterized by clinical manifestations resulting from abnormal ciliary motility. Mutations in critical genes, such as Cyclin O (CCNO), have been associated with severe respiratory disease, though limited data are currently available. Here we show that CCNO deficient ciliated cells can only form a reduced number of fully functional centrioles that can mature into ciliated basal bodies, and their transport and anchoring to the top of the plasma membrane are abnormal. Furthermore, we observed that CCNO localizes not only in the cytoplasm but also in the nucleus during the early stages of ciliogenesis, and this dual localization persists into adulthood. Transcriptome analysis revealed downregulation of genes involved in cilia assembly and movement, along with altered transcription factors associated with ciliation upon CCNO depletion. These findings indicate that CCNO may serve as a key regulator in the transcriptional regulation of multiciliogenesis.

6.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
7.
Plant Biotechnol J ; 22(9): 2410-2423, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38634166

RESUMO

The N6-methyladenosine (m6A) mRNA modification is crucial for plant development and stress responses. In rice, the male sterility resulting from the deficiency of OsFIP37, a core component of m6A methyltransferase complex, emphasizes the significant role of m6A in male fertility. m6A is reversible and can be removed by m6A demethylases. However, whether mRNA m6A demethylase regulates male fertility in rice has remained unknown. Here, we identify the mRNA m6A demethylase OsALKBH9 and demonstrate its involvement in male fertility regulation. Knockout of OsALKBH9 causes male sterility, dependent on its m6A demethylation activity. Cytological analysis reveals defective tapetal programmed cell death (PCD) and excessive accumulation of microspores exine in Osalkbh9-1. Transcriptome analysis of anthers shows up-regulation of genes involved in tapetum development, sporopollenin synthesis, and transport pathways in Osalkbh9-1. Additionally, we demonstrate that OsALKBH9 demethylates the m6A modification in TDR and GAMYB transcripts, which affects the stability of these mRNAs and ultimately leads to excessive accumulation of pollen exine. Our findings highlight the precise control of mRNA m6A modification and reveal the pivotal roles played by OsALKBH9-mediated m6A demethylation in tapetal PCD and pollen exine accumulation in rice.


Assuntos
Desmetilação , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/metabolismo , Pólen/genética , Pólen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptose/genética , Infertilidade das Plantas/genética
8.
Plant Cell Environ ; 47(8): 2852-2864, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38600785

RESUMO

Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Ácido Salicílico , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Cloroplastos/metabolismo , Mutação , Transdução de Sinais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
9.
Clin Genet ; 105(2): 220-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37950557

RESUMO

Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.


Assuntos
Axonema , Infertilidade Masculina , Masculino , Humanos , Axonema/genética , Mutação , Sêmen , Cauda do Espermatozoide , Infertilidade Masculina/genética , Espermatozoides , Flagelos , Proteínas Associadas aos Microtúbulos/genética , Dineínas/genética
10.
Clin Proteomics ; 21(1): 8, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311768

RESUMO

BACKGROUND: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS: In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS: This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS: The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.

11.
J Exp Bot ; 75(14): 4346-4359, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38364847

RESUMO

Double fertilization in angiosperms results in the formation of a second zygote, the fertilized endosperm. Unlike its embryo sibling, the endosperm is a transient structure that eventually undergoes developmentally controlled programmed cell death (PCD) at specific time points of seed development or germination. The nature of endosperm PCD exhibits a considerable diversity, both across different angiosperm taxa and within distinct endosperm tissues. In endosperm-less species, PCD might cause central cell degeneration as a mechanism preventing the formation of a fertilized endosperm. In most other angiosperms, embryo growth necessitates the elimination of surrounding endosperm cells. Nevertheless, complete elimination of the endosperm is rare and, in most cases, specific endosperm tissues persist. In mature seeds, these persisting cells may be dead, such as the starchy endosperm in cereals, or remain alive to die only during germination, like the cereal aleurone or the endosperm of castor beans. In this review, we explore current knowledge surrounding the cellular, molecular, and genetic aspects of endosperm PCD, and the influence environmental stresses have on PCD processes. Overall, this review provides an exhaustive overview of endosperm PCD processes in angiosperms, shedding light on its diverse mechanisms and its significance in seed development and seedling establishment.


Assuntos
Endosperma , Magnoliopsida , Endosperma/crescimento & desenvolvimento , Endosperma/fisiologia , Magnoliopsida/fisiologia , Fenômenos Fisiológicos Vegetais , Apoptose , Amido , Ricinus communis , Germinação
12.
Insect Mol Biol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545681

RESUMO

The silkworm, Bombyx mori, is a complete metamorphosed economic insect, and the silk gland is a significant organ for silk protein synthesis and secretion. The silk gland completely degenerates during pupation, but the regulatory mechanism of programmed cell death (PCD) has not yet been understood. In the present study, we investigated the non-genetic pathway of 20E-induced PCD in the posterior silk gland (PSG) based on intracellular Ca2+ levels. Silk gland morphology and silk gland index indicated rapid degeneration of silk gland during metamorphosis from mature silkworm (MS) to pupal day 1 (P1), and Ca2+ levels within the PSG were found to peak during the pre-pupal day 1 (PP1) stage. Moreover, the results of autophagy and apoptosis levels within the PSG showed that autophagy was significantly increased in MS-PP1 periods, and significantly decreased in PP2 and P1 periods. Apoptosis was almost absent in MS-PP1 periods and significantly increased in PP2 and P1 periods. Additionally, western blotting results showed that autophagy preceded apoptosis, and the autophagy-promoting ATG5 was cleaved by calpain to the autophagy-inhibiting and apoptosis-promoting NtATG5 since PP1 period, while decreased autophagy was accompanied by increased apoptosis. Collectively, these findings suggest that Ca2+ is a key factor in the shift from autophagy to apoptosis.

13.
Cancer Cell Int ; 24(1): 164, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730293

RESUMO

Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities to anti-PD-1 therapy. The high-PCD group demonstrates a more immune-suppressive environment, while the low-PCD group shows better responses to PD-1 treatment. In particular, TOP2A emerged as crucial, with its inhibition markedly reducing KIRC cell growth and mobility. These findings underscore the relevance of PCDs in predicting KIRC outcomes and immunotherapy response, with implications for enhancing clinical decision-making.

14.
BMC Cancer ; 24(1): 645, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802745

RESUMO

BACKGROUND: Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS: Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS: For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS: Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.


Assuntos
Proliferação de Células , Técnicas de Inativação de Genes , Neoplasias Ovarianas , Proteômica , Ribossomos , Humanos , Ribossomos/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proteômica/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Multiômica
15.
Cerebellum ; 23(2): 471-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37071329

RESUMO

Degenerative effects of nerve tissues are often accompanied by changes in vascularization. In this regard, knowledge about hereditary cerebellar degeneration is limited. In this study, we compared the vascularity of the individual cerebellar components of 3-month-old wild-type mice (n = 8) and Purkinje cell degeneration (pcd) mutant mice, which represent a model of hereditary cerebellar degeneration (n = 8). Systematic random samples of tissue sections were processed, and laminin was immunostained to visualize microvessels. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in cerebellar layers. Our results in pcd mice revealed a 45% (p < 0.01) reduction in the total volume of the cerebellum, a 28% (p < 0.05) reduction in the total number of vessels and a lower total length, approaching 50% (p < 0.001), compared to the control mice. In pcd mutants, cerebellar degeneration is accompanied by significant reduction in the microvascular network that is proportional to the cerebellar volume reduction therefore does not change density of in the cerebellar gray matter of pcd mice.


Assuntos
Cerebelo , Células de Purkinje , Camundongos , Animais , Células de Purkinje/fisiologia , Microvasos , Camundongos Mutantes Neurológicos , Camundongos Endogâmicos C57BL
16.
Cell Commun Signal ; 22(1): 333, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890642

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inflamação , Microambiente Tumoral , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Inflamação/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Apoptose , Animais
17.
Mol Biol Rep ; 51(1): 960, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235684

RESUMO

PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.


Assuntos
Doenças da Boca , Necroptose , Piroptose , Humanos , Doenças da Boca/patologia , Necroptose/genética , Apoptose/genética , Animais
18.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418607

RESUMO

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelamento , Ribulose-Bifosfato Carboxilase/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
19.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884744

RESUMO

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Assuntos
Mutação , Humanos , Síndrome de Heterotaxia/genética , Cardiopatias Congênitas/genética , Situs Inversus/genética
20.
J Assist Reprod Genet ; 41(6): 1485-1498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568462

RESUMO

PURPOSE: This study aimed to identify the genetic causes of male infertility and primary ciliary dyskinesia (PCD)/PCD-like phenotypes in three unrelated Han Chinese families. METHODS: We conducted whole-exome sequencing of three patients with male infertility and PCD/PCD-like phenotypes from three unrelated Chinese families. Ultrastructural and immunostaining analyses of patient spermatozoa and respiratory cilia and in vitro analyses were performed to analyze the effects of SPEF2 variants. Intracytoplasmic sperm injection (ICSI) was administered to three affected patients. RESULTS: We identified four novel SPEF2 variants, including one novel homozygous splicing site variant [NC_000005.10(NM_024867.4): c.4447 + 1G > A] of the SPEF2 gene in family 1, novel compound heterozygous nonsense variants [NC_000005.10(NM_024867.4): c.1339C > T (p.R447*) and NC_000005.10(NM_024867.4): c.1645G > T (p.E549*)] in family 2, and one novel homozygous missense variant [NC_000005.10(NM_024867.4): c.2524G > A (p.D842N)] in family 3. All the patients presented with male infertility and PCD/likely PCD. All variants were present at very low levels in public databases, predicted to be deleterious in silico prediction tools, and were further confirmed deleterious by in vitro analyses. Ultrastructural analyses of the spermatozoa of the patients revealed the absence of the central pair complex in the sperm flagella. Immunostaining of the spermatozoa and respiratory cilia of the patients validated the pathogenicity of the SPEF2 variants. All patients carrying SPEF2 variants underwent one ICSI cycle and delivered healthy infants. CONCLUSION: Our study reported four novel pathogenic variants of SPEF2 in three male patients with infertility and PCD/PCD-like phenotypes, which not only extend the spectrum of SPEF2 mutations but also provide information for genetic counseling and treatment of such conditions.


Assuntos
Infertilidade Masculina , Linhagem , Injeções de Esperma Intracitoplásmicas , Espermatozoides , Adulto , Humanos , Masculino , China , Cílios/genética , Cílios/patologia , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Homozigoto , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação/genética , Fenótipo , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA