Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193977

RESUMO

Ocean warming and acidification driven by anthropogenic carbon emissions pose an existential threat to marine calcifying communities. A similar perturbation to global carbon cycling and ocean chemistry occurred ∼56 Ma during the Paleocene-Eocene thermal maximum (PETM), but microfossil records of the marine biotic response are distorted by sediment mixing. Here, we use the carbon isotope excursion marking the PETM to distinguish planktic foraminifer shells calcified during the PETM from those calcified prior to the event and then isotopically filter anachronous specimens from the PETM microfossil assemblages. We find that nearly one-half of foraminifer shells in a deep-sea PETM record from the central Pacific (Ocean Drilling Program Site 865) are reworked contaminants. Contrary to previous interpretations, corrected assemblages reveal a transient but significant decrease in tropical planktic foraminifer diversity at this open-ocean site during the PETM. The decrease in local diversity was caused by extirpation of shallow- and deep-dwelling taxa as they underwent extratropical migrations in response to heat stress, with one prominent lineage showing signs of impaired calcification possibly due to ocean acidification. An absence of subbotinids in the corrected assemblages suggests that ocean deoxygenation may have rendered thermocline depths uninhabitable for some deeper-dwelling taxa. Latitudinal range shifts provided a rapid-response survival mechanism for tropical planktic foraminifers during the PETM, but the rapidity of ocean warming and acidification projected for the coming centuries will likely strain the adaptability of these resilient calcifiers.


Assuntos
Ácidos/química , Aquecimento Global , Plâncton , Planeta Terra , Fósseis , Isótopos
2.
Mol Phylogenet Evol ; 190: 107945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863452

RESUMO

The deep-sea has experienced dramatic changes in physical and chemical variables in the geological past. However, little is known about how deep-sea species richness responded to such changes over time and space. Here, we studied the diversification dynamics of one of the most diverse octocorallian families inhabiting deep sea benthonic environments worldwide and sustaining highly diverse ecosystems, Primnoidae. A newly dated species-level phylogeny was constructed to infer their ancestral geographic locations and dispersal rates initially. Then, we tested whether their global and regional (the Southern Ocean) diversification dynamics were mediated by dispersal rate and abiotic factors as changes in ocean geochemistry. Finally, we tested whether primnoids showed changes in speciation and extinction at discrete time points. Our results suggested primnoids likely originated in the southwestern Pacific Ocean during the Lower Cretaceous âˆ¼112 Ma, with further dispersal after the physical separation of continental landmasses along the late Mesozoic and Cenozoic. Only the speciation rate of the Southern Ocean primnoids showed a significant correlation to ocean chemistry. Moreover, the Paleocene-Eocene thermal maximum marked a significant increase in the diversification of primnoids at global and regional scales. Our results provide new perspectives on the macroevolutionary and biogeographic patterns of an ecologically important benthic organism typically found in deep-sea environments.


Assuntos
Antozoários , Ecossistema , Humanos , Animais , Filogenia , Oceano Pacífico
3.
Protein Expr Purif ; 215: 106414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072143

RESUMO

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease-19 (COVID-19). The COVID-19 pandemic has resulted in millions of deaths and widespread socio-economic damage worldwide. Therefore, numerous studies have been conducted to identify effective measures to control the spreading of the virus. Among various potential targets, the 3 chymotrypsin-like protease (3CLpro), also known as Mpro, stands out as the key protease of SARS-CoV-2, playing an essential role in virus replication and assembly, is the most prospective. In this study, we modified the commercial vector, pETM33-Nsp5-Mpro (plasmid # 156475, Addgene, USA), by inserting an autocleavage site (AVLQ) of 3CLpro and 6 × His-tag encoding sequences before and after the Nsp5-Mpro sequence, respectively. This modification enabled the expression of 3CLpro as an authentic N terminal protease (au3CLpro), which was purified to electrophoretic homogeneity by a single-step chromatography using two tandem Glutathione- and Ni-Sepharose columns. The enzyme au3CLpro demonstrated significantly higher activity (3169 RFU/min/µg protein) and catalytic efficiency (Kcat/Km of 0.007 µM-1.s-1) than that of the 3CLpro (com3CLpro) expressed from the commercial vector (pETM33-Nsp5-Mpro) with specific activity 889 RFU/min/µg and Kcat/Km of 0.0015 µM-1.s-1, respectively. Optimal conditions for au3CLpro activity included a 50 mM Tris-HCl buffer at pH 7, containing 150 mM NaCl and 0.1 mg/ml BSA at 37 °C.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Quimases , Pandemias , Estudos Prospectivos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases , Antivirais/uso terapêutico , Simulação de Acoplamento Molecular
4.
Plant Cell Physiol ; 62(10): 1603-1614, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283246

RESUMO

The cytochrome b6f (cyt b6f) acts as a common linker of electron transport between photosystems I and II in oxygenic photosynthesis. PetM, one of eight subunits of the cyt b6f complex, is a small hydrophobic subunit at the outside periphery, the functional mechanism of which remains to be elucidated in higher plants. In this work, we found that unlike the PetM mutant in Synechocystis sp. PCC 6803, the Arabidopsis thaliana PetM mutant showed a bleached phenotype with yellowish leaves, block of photosynthetic electron transport and loss of photo-autotrophy, similar to the Arabidopsis PetC mutant. Although PetM is relatively conserved between higher plants and cyanobacteria, Synechocystis PetM could not rescue the PetM-knockout phenotype in Arabidopsis. We provide evidence that the Synechocystis PetM did not stably bind to the Arabidopsis cyt b6f complex. Based on these results, we suggest that PetM is required by Arabidopsis to maintain the function of the cyt b6f complex, likely through its close link with core subunits to form a tight 'fence' that stabilizes the core of the complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Complexo Citocromos b6f/genética , Mutação , Fotossíntese , Folhas de Planta/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cor , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Fenótipo , Alinhamento de Sequência
5.
Proc Natl Acad Sci U S A ; 113(28): 7739-44, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354522

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.


Assuntos
Apatitas/química , Mudança Climática , Esmalte Dentário/química , Fósseis , Gases de Efeito Estufa , Isótopos de Oxigênio/análise , Atmosfera/química , Dióxido de Carbono , Metano , Temperatura
6.
Proc Natl Acad Sci U S A ; 113(43): 12059-12064, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790990

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of 13C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO2 from hydrothermal vent complexes. Here, we test for the contribution of carbon release associated with volcanic intrusions in the North Atlantic Igneous Province. We use dinoflagellate cyst and stable carbon isotope stratigraphy to date the active phase of a hydrothermal vent system and find it to postdate massive carbon release at the onset of the PETM. Crucially, however, it correlates to the period within the PETM of longer-term 13C-depleted carbon release. This finding represents actual proof of PETM carbon release from a particular reservoir. Based on carbon cycle box model [i.e., Long-Term Ocean-Atmosphere-Sediment Carbon Cycle Reservoir (LOSCAR) model] experiments, we show that 4-12 pulses of carbon input from vent systems over 60 kyr with a total mass of 1,500 Pg of C, consistent with the vent literature, match the shape of the CIE and pattern of deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that CH4 from the Norwegian Sea vent complexes was likely the main source of carbon during the PETM, following its dramatic onset.

7.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30177562

RESUMO

The extreme warmth associated with the mass extinction at the Permian-Triassic boundary was likely produced by a rapid build-up of carbon dioxide in the atmosphere from the eruption and emplacement of the Siberian Traps. In comparison to another hyperthermal event, the Palaeocene-Eocene Thermal Maximum, the Permian-Triassic event, while leaving a similar carbon isotope record, likely had larger amounts of CO2 emitted and did not follow the expected time scale of climate recovery. The quantities and rates of CO2 emission likely exhausted the capacity of the long-term climate regulator associated with silicate weathering. Failure was enhanced by slow rock uplift and high continentality associated with the supercontinental phase of global tectonics at the time of the Siberian Traps eruption.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.

8.
Am J Bot ; 100(7): 1234-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23825133

RESUMO

PREMISE OF THE STUDY: The fossil record provides information about the long-term response of plants to CO2-induced climate change. The Paleocene-Eocene Thermal Maximum (PETM), a 200000-yr-long period of rapid carbon release and warming that occurred ∼56 million years ago, is analogous to future anthropogenic global warming. METHODS: We collected plant macrofossils in the Bighorn Basin, Wyoming, United States, from a period spanning the PETM and studied changes in floristic composition. We also compiled and summarized published records of floristic change during the PETM. KEY RESULTS: There was radical floristic change in the Bighorn Basin during the PETM reflecting local or regional extirpation of mesophytic plants, notably conifers, and colonization of the area by thermophilic and dry-tolerant species, especially Fabaceae. This floristic change largely reversed itself as the PETM ended, though some immigrant species persisted and some Paleocene species never returned. Less detailed records from other parts of the world show regional variation in floristic response, but are mostly consistent with the Bighorn Basin trends. CONCLUSIONS: Despite geologically rapid extirpation, colonization, and recolonization, we detected little extinction during the PETM, suggesting the rate of climate change did not exceed the dispersal capacity of terrestrial plants. Extrapolating the response of plants from the PETM to future anthropogenic climate change likely underestimates risk because rates of climate change during the PETM may have been an order of magnitude slower than current rates of change and because the abundant, widespread species common as fossils are likely resistant to extinction.


Assuntos
Evolução Biológica , Mudança Climática , Fósseis , Plantas/classificação , Plantas/genética , Dinâmica Populacional , Fatores de Tempo
9.
Palynology ; 44(3): 489-519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-39161929

RESUMO

At the end of the Cretaceous Period, an asteroid collided with the Earth and formed the Chicxulub impact structure on the Yucatán Platform. International Ocean Discovery Program (IODP) Expedition 364 drilled into the peak ring of the Chicxulub impact crater. The post-impact section of the core was sampled for terrestrial palynological analysis, yielding a high-resolution record ranging from the early Paleocene to the earliest Eocene (Ypresian), including a black shale deposited during the Paleocene-Eocene Thermal Maximum (PETM). The IODP 364 core provides the first record of floral recovery following the K-Pg mass extinction from inside the Chicxulub impact crater. The systematic taxonomy of the angiosperm pollen provided here follows a separate publication describing the systematic paleontology of the plant spores and gymnosperm pollen from the IODP 364 core (Smith et al. 2019). The Paleocene section of the core is nearly barren, but with unusually high relative abundances of the angiosperm pollen Chenopodipollis sp. A (comparable to the Amaranthaceae), possibly indicating an estuarine pollen source. Pollen recovery is higher in the PETM section, and variable but generally increasing in the later Ypresian section, with excellent preservation in several samples. Estimated absolute ages of several potentially useful regional biostratigraphic events are provided. One new genus (Scabrastephanoporites) and five new species (Brosipollis reticulatus, Echimonocolpites chicxulubensis, Psilastephanocolporites hammenii, Scabrastephanoporites variabilis, and Striatopollis grahamii) are formally described.

10.
Paleoceanogr Paleoclimatol ; 34(4): 546-566, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245790

RESUMO

Current climate change may induce positive carbon cycle feedbacks that amplify anthropogenic warming on time scales of centuries to millennia. Similar feedbacks might have been active during a phase of carbon cycle perturbation and global warming, termed the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago). The PETM may help constrain these feedbacks and their sensitivity to warming. We present new high-resolution carbon isotope and sea surface temperature data from Ocean Drilling Program Site 959 in the Equatorial Atlantic. With these and existing data from the New Jersey Shelf and Maud Rise, Southern Ocean, we quantify the lead-lag relation between PETM warming and the carbon input that caused the carbon isotope excursion (CIE). We show ~2 °C of global warming preceded the CIE by millennia, strongly implicating CO2-driven warming triggered a positive carbon cycle feedback. We further compile new and published barium (Ba) records encompassing continental shelf, slope, and deep ocean settings. Based on this compilation, we calculate that average Ba burial rates approximately tripled during the PETM, which may require an additional source of Ba to the ocean. Although the precipitation pathway is not well constrained, dissolved Ba stored in sulfate-depleted pore waters below methane hydrates could represent an additional source. We speculate the most complete explanation for early warming and rise in Ba supply is that hydrate dissociation acted as a positive feedback and caused the CIE. These results imply hydrates are more temperature sensitive than previously considered, and may warrant reconsideration of the political assignment of 2 °C warming as a safe future scenario.

11.
PeerJ ; 7: e7798, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637117

RESUMO

Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene--Eocene boundary in the Hanna Basin, southeastern Wyoming. This particular location is unlike other nearby Laramide basins because it has an abundance of late Paleocene and Eocene coal and carbonaceous shales and paucity of well-developed paleosols, suggesting perpetually high water availability. We sampled approximately 800 semi-intact dicot leaves from five stratigraphic levels, one of which occurs late in the Paleocene-Eocene thermal maximum (PETM). Field collections were supplemented with specimens at the Denver Museum of Nature & Science. Fossil leaves were classified into morphospecies and herbivore damage was documented for each leaf. We tested for changes in plant and insect herbivore damage diversity using rarefaction and community composition using non-metric multidimensional scaling ordinations. We also documented changes in depositional environment at each stratigraphic level to better contextualize the environment of the basin. Plant diversity was highest during the mid-late Paleocene and decreased into the Eocene, whereas damage diversity was highest at the sites with low plant diversity. Plant communities significantly changed during the late PETM and do not return to pre-PETM composition. Insect herbivore communities also changed during the PETM, but, unlike plant communities, rebound to their pre-PETM structure. These results suggest that insect herbivore communities responded more strongly to plant community composition than to the diversity of species present.

12.
Sci Adv ; 3(3): e1600891, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275727

RESUMO

Global ocean temperatures rapidly warmed by ~5°C during the Paleocene-Eocene Thermal Maximum (PETM; ~56 million years ago). Extratropical sea surface temperatures (SSTs) met or exceeded modern subtropical values. With these warm extratropical temperatures, climate models predict tropical SSTs >35°C-near upper physiological temperature limits for many organisms. However, few data are available to test these projected extreme tropical temperatures or their potential lethality. We identify the PETM in a shallow marine sedimentary section deposited in Nigeria. On the basis of planktonic foraminiferal Mg/Ca and oxygen isotope ratios and the molecular proxy [Formula: see text], latest Paleocene equatorial SSTs were ~33°C, and [Formula: see text] indicates that SSTs rose to >36°C during the PETM. This confirms model predictions on the magnitude of polar amplification and refutes the tropical thermostat theory. We attribute a massive drop in dinoflagellate abundance and diversity at peak warmth to thermal stress, showing that the base of tropical food webs is vulnerable to rapid warming.


Assuntos
Fósseis , Aquecimento Global , Resposta ao Choque Térmico/fisiologia , Plâncton/fisiologia
13.
Zookeys ; (352): 9-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294090

RESUMO

Scolytoplatypodini Blandford is a monotypic tribe of ambrosia beetles found in Asia, Madagascar and Africa. Only three species are currently known from Madagascar and four additional species are here described as new to science. Phylogenetic analyses of morphological and molecular data revealed that four of the seven endemic species are deeply separated from all other species by genetic and distinct morphological characters and therefore placed in a new genus Remansus Jordal. The split between this ancient lineage and Scolytoplatypus Schaufuss was estimated to approximate Palaeocene age (63 Ma), extending the minimum age of ambrosia feeding for this tribe to the beginning of the Palaeocene‒Eocene thermal maximum (PETM). In addition to the ancient origin of Remansus in Madagascar during the Palaeocene, a second origin occurred in Scolytoplatypus no more than 13 Ma. A geographical origin of the latter in South-Eastern Africa was unequivocally inferred from the phylogenies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA