Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(1): 20-34, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37758243

RESUMO

Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Cancer ; 24(1): 558, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702621

RESUMO

BACKGROUND: Portal hypertension (PHT) has been proven to be closely related to the development of hepatocellular carcinoma (HCC). Whether PHT before liver transplantation (LT) will affect the recurrence of HCC is not clear. METHODS: 110 patients with depressurization of the portal vein (DPV) operations (Transjugular Intrahepatic Portosystemic Shunt-TIPS, surgical portosystemic shunt or/and splenectomy) before LT from a HCC LT cohort, matched with 330 preoperative non-DPV patients; this constituted a nested case-control study. Subgroup analysis was based on the order of DPV before or after the occurrence of HCC. RESULTS: The incidence of acute kidney injury and intra-abdominal bleeding after LT in the DPV group was significantly higher than that in non-DPV group. The 5-year survival rates in the DPV and non-DPV group were 83.4% and 82.7% respectively (P = 0.930). In subgroup analysis, patients in the DPV prior to HCC subgroup may have a lower recurrence rate (4.7% vs.16.8%, P = 0.045) and a higher tumor free survival rate (88.9% vs.74.4%, P = 0.044) after LT under the up-to-date TNMI-II stage, while in TNM III stage, there was no difference for DPV prior to HCC subgroup compared with the DPV after HCC subgroup or the non-DPV group. CONCLUSION: Compared with DPV after HCC, DPV treatment before HCC can reduce the recurrence rate of HCC after early transplantation (TNM I-II). DPV before LT can reduce the recurrence of early HCC.


Assuntos
Carcinoma Hepatocelular , Hipertensão Portal , Neoplasias Hepáticas , Transplante de Fígado , Recidiva Local de Neoplasia , Veia Porta , Humanos , Transplante de Fígado/efeitos adversos , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Masculino , Feminino , Veia Porta/patologia , Veia Porta/cirurgia , Pessoa de Meia-Idade , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Estudos de Casos e Controles , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Hipertensão Portal/cirurgia , Hipertensão Portal/complicações , Idoso , Adulto
3.
Environ Sci Technol ; 58(17): 7346-7356, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624169

RESUMO

Arsenic (As) contamination in soil poses a potential threat to human health via crop uptake. As-hyperaccumulator Pteris vittata serves as a model plant to study As uptake and associated mechanisms. This study focuses on a novel P/AsV transport system mediated by low-affinity phosphate transporter-B 1 family (PTB1) in P. vittata. Here, we identified two plasma-membrane-localized PTB1 genes, PvPTB1;1/1;2, in vascular plants for the first time, which were 4.4-40-fold greater in expression in P. vittata than in other Pteris ferns. Functional complementation of a yeast P-uptake mutant and enhanced P accumulation in transgenic Arabidopsis thaliana confirmed their role in P uptake. Moreover, the expression of PvPTB1;1/1;2 facilitated the transport and accumulation of As in both yeast and A. thaliana shoots, demonstrating a comparable AsV uptake capacity. Microdissection-qPCR analysis and single-cell transcriptome analysis collectively suggest that PvPTB1;1/1;2 are specifically expressed in the epidermal cells of P. vittata roots. PTB1 may play a pivotal role in efficient P recycling during phytate secretion and hydrolysis in P. vittata roots. In summary, the dual P transport mechanisms consisting of high-affinity Pht1 and low-affinity PTB1 may have contributed to the efficient P/As uptake in P. vittata, thereby contributing to efficient phytoremediation for As-contaminated soils.


Assuntos
Arsênio , Proteínas de Transporte de Fosfato , Fosfatos , Pteris , Pteris/metabolismo , Pteris/genética , Arsênio/metabolismo , Fosfatos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Poluentes do Solo/metabolismo , Transporte Biológico
4.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356137

RESUMO

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
5.
Plant J ; 111(1): 72-84, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436372

RESUMO

High-affinity phosphate (Pi) transporters (PHTs) PHT1;1 and PHT1;4 are necessary for plant root Pi uptake especially under Pi-deficient conditions, but how their protein stability is modulated remains elusive. Here, we identified a Ttransfer DNA insertion mutant of Sorting Nexin1 (SNX1), which had more Pi content and less anthocyanin accumulation than the wild type under deficient Pi. By contrast, the snx1-2 mutant displayed higher sensitivity to exogenous arsenate in terms of seed germination and root elongation, revealing higher Pi uptake rates. Further study showed that SNX1 could co-localize and interact with PHT1;1 and PHT1;4 in vesicles and at the plasma membrane. Genetic analysis showed that increased Pi content in the snx1-2 mutant under low Pi conditions could be extensively compromised by mutating PHT1;1 in the double mutant snx1-2 pht1;1, revealing that SNX1 is epistatic to PHT1;1. In addition, SNX1 negatively controls PHT1;1 protein stability; therefore, PHT1;1 protein abundance in the plasma membrane was increased in the snx1-2 mutant compared with the wild type under either sufficient or deficient Pi. Together, our study (i) identifies SNX1 as a key modulator of the plant response to low Pi and (ii) unravels its role in the modulation of PHT1;1 protein stability, PHT1;1 accumulation at the plasma membrane, and root Pi uptake.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
6.
Plant J ; 111(6): 1753-1767, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883193

RESUMO

Phosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype. A gene encoding a Pi transporter (PHT), PdePHT1;9, was identified as the direct downstream target of PdeWRKY65 by RNA sequencing (RNA-Seq). The negative regulation of PdePHT1;9 expression by PdeWRKY65 was confirmed by DNA-protein interaction assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), co-expression of the promoters of PdePHT1;9 and PdeWRKY65 in tobacco (Nicotiana benthamiana) leaves, and chromatin immunoprecipitation-quantitative PCR. A second WRKY TF, PdeWRKY6, was subsequently identified and confirmed to positively regulate the expression of PdePHT1;9 by DNA-protein interaction assays. PdePHT1;9 and PdeWRKY6 OE and RE poplar transgenic lines were used to confirm their positive regulation of shoot Pi concentrations, under both normal and low Pi availabilities. No interaction between PdeWRKY6 and PdeWRKY65 was observed at the DNA or protein levels. Collectively, these data suggest that the low Pi-responsive TFs PdeWRKY6 and PdeWRKY65 independently regulate the expression of PHT1;9 to modulate tissue Pi concentrations in poplar.


Assuntos
Populus , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Small ; 19(2): e2202343, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394151

RESUMO

Ectopic pregnancy (EP) is the leading cause of maternity-related death in the first trimester of pregnancy. Approximately 98% of ectopic implantations occur in the fallopian tube, and expedient management is crucial for preventing hemorrhage and maternal death in the event of tubal rupture. Current ultrasound strategies misdiagnose EP in up to 40% of cases, and the failure rate of methotrexate treatment for confirmed EP exceeds 10%. Here the first theranostic strategy for potential management of EP is reported using a near-infrared naphthalocyanine dye encapsulated within polymeric nanoparticles. These nanoparticles preferentially accumulate in the developing murine placenta within 24 h following systemic administration, and enable visualization of implantation sites at various gestational stages via fluorescence and photoacoustic imaging. These nanoparticles do not traverse the placental barrier to the fetus or impact fetal development. However, excitation of nanoparticles localized in specific placentas with focused NIR light generates heat (>43 °C) sufficient for disruption of placental function, resulting in the demise of targeted fetuses with no effect on adjacent fetuses. This novel approach would enable diagnostic confirmation of EP when current imaging strategies are unsuccessful, and elimination of EP could subsequently be achieved using the same nano-agent to generate localized hyperthermia resulting in targeted placental impairment.


Assuntos
Hipertermia Induzida , Gravidez Ectópica , Gravidez , Feminino , Humanos , Animais , Camundongos , Placenta/diagnóstico por imagem , Gravidez Ectópica/terapia , Tubas Uterinas/diagnóstico por imagem , Ultrassonografia
8.
J Exp Bot ; 74(6): 1784-1805, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708176

RESUMO

The soil contributes to the main pool of essential mineral nutrients for plants. These mineral nutrients are critical elements for the building blocks of plant biomolecules, play fundamental roles in cell processes, and act in various enzymatic reactions. The roots are the main entry point for mineral nutrients used within the plant to grow, develop, and produce seeds. In this regard, a suite of plant nutrient transport systems, sensors, and signaling proteins function in acquiring mineral nutrients through the roots. Mineral nutrients from chemical fertilizers, composed mainly of nitrogen, phosphorus, and potassium (NPK), are added to agricultural land to maximize crop yields, worldwide. However, improving nutrient uptake and use within crops is critical for economically and environmentally sustainable agriculture. Therefore, we review the molecular basis for N, P, and K nutrient uptake into the roots. Remarkably, plants are responsive to heterogeneous nutrient distribution and align root growth and nutrient uptake with nutrient-rich patches. We highlight the relationship between nutrient distribution in the growth environment and root system architecture. We discuss the exchange of information between the root and shoot systems through the xylem and phloem, which coordinates nutrient uptake with photosynthesis. The size and structure of the root system, along with the abundance and activity of nutrient transporters, largely determine the nutrient acquisition rate. Lastly, we discuss connections between N, P, and K uptake and signaling.


Assuntos
Raízes de Plantas , Solo , Raízes de Plantas/metabolismo , Transporte Biológico , Minerais/metabolismo , Produtos Agrícolas/metabolismo
9.
Pharm Res ; 40(11): 2585-2596, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37610621

RESUMO

The oligopeptide/histidine transporters PHT1 and PHT2, two mammalian solute carrier family 15A proteins, mediate the transmembrane transport of histidine and some di/tripeptides via proton gradient. PHT1 and PHT2 are distributed in a variety of tissues but are preferentially expressed in immune cells and localize to the lysosome-related organelles. Studies have reported the relationships between PHT1/PHT2 and immune diseases. PHT1 and PHT2 participate in the regulation of lysosomal homeostasis and lysosome-associated signaling pathways through their transport and nontransport functions, playing important roles in inflammatory diseases. In this review, we summarize recent research on PHT1 and PHT2, aiming to provide reference for their further biological research and as targets for drug design.


Assuntos
Simportadores , Animais , Transporte Biológico/fisiologia , Histidina , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Simportadores/metabolismo
10.
Pharm Res ; 40(11): 2533-2540, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37308743

RESUMO

This mini-review describes the role of the solute carrier (SLC)15 family of proton-coupled oligopeptide transporters (POTs) and particularly Pept2 (Slc15A2) and PhT1 (Slc15A4) in the brain. That family transports endogenous di- and tripeptides and peptidomimetics but also a number of drugs. The review focuses on the pioneering work of David E. Smith in the field in identifying the impact of PepT2 at the choroid plexus (the blood-CSF barrier) as well as PepT2 and PhT1 in brain parenchymal cells. It also discusses recent findings and future directions in relation to brain POTs including cellular and subcellular localization, regulatory pathways, transporter structure, species differences and disease states.


Assuntos
Simportadores , Simportadores/metabolismo , Prótons , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA