Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(6): 1198-1211.e19, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200801

RESUMO

It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.


Assuntos
Técnicas de Cultura de Células/métodos , Receptor de Proteína C Endotelial/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Proteína C/metabolismo , Células-Tronco/citologia
2.
Cell ; 181(4): 832-847.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32304665

RESUMO

Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Molecular analyses of human and murine samples define microenvironmental consequences of obesity that foster tumorigenesis rather than new driver gene mutations, including significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant beta cell expression of the peptide hormone cholecystokinin (Cck) in response to obesity and show that islet Cck promotes oncogenic Kras-driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment and implicate endocrine-exocrine signaling beyond insulin in PDAC development.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Obesidade/metabolismo , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Progressão da Doença , Células Endócrinas/metabolismo , Glândulas Exócrinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Obesidade/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/fisiologia , Neoplasias Pancreáticas
3.
Immunity ; 57(7): 1629-1647.e8, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38754432

RESUMO

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Diferenciação Celular , Quimiocina CXCL16 , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Lipoproteínas LDL , Macrófagos , Camundongos Endogâmicos NOD , Camundongos Knockout , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Quimiocina CXCL16/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 120(7): e2206797120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36757889

RESUMO

Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , MicroRNAs , Humanos , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas/genética
5.
Proc Natl Acad Sci U S A ; 120(35): e2206612120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603758

RESUMO

Genetic association studies have identified hundreds of independent signals associated with type 2 diabetes (T2D) and related traits. Despite these successes, the identification of specific causal variants underlying a genetic association signal remains challenging. In this study, we describe a deep learning (DL) method to analyze the impact of sequence variants on enhancers. Focusing on pancreatic islets, a T2D relevant tissue, we show that our model learns islet-specific transcription factor (TF) regulatory patterns and can be used to prioritize candidate causal variants. At 101 genetic signals associated with T2D and related glycemic traits where multiple variants occur in linkage disequilibrium, our method nominates a single causal variant for each association signal, including three variants previously shown to alter reporter activity in islet-relevant cell types. For another signal associated with blood glucose levels, we biochemically test all candidate causal variants from statistical fine-mapping using a pancreatic islet beta cell line and show biochemical evidence of allelic effects on TF binding for the model-prioritized variant. To aid in future research, we publicly distribute our model and islet enhancer perturbation scores across ~67 million genetic variants. We anticipate that DL methods like the one presented in this study will enhance the prioritization of candidate causal variants for functional studies.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 2 , Elementos Facilitadores Genéticos , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Variação Genética , Humanos , Simulação por Computador
6.
Proc Natl Acad Sci U S A ; 119(47): e2206923119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375063

RESUMO

Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress-induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Ácido Palmítico/farmacologia , Ácidos Esteáricos , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Proteína Supressora de Tumor p53/genética , Senescência Celular/genética , Estresse Fisiológico , Proteínas Proto-Oncogênicas c-mdm2/genética
7.
Genes Dev ; 31(3): 228-240, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270515

RESUMO

Following differentiation during fetal development, ß cells further adapt to their postnatal role through functional maturation. While adult islets are thought to contain functionally mature ß cells, recent analyses of transgenic rodent and human pancreata reveal a number of novel heterogeneity markers in mammalian ß cells. The marked heterogeneity long after maturation raises the prospect that diverse populations harbor distinct roles aside from glucose-stimulated insulin secretion. In this review, we outline our current understanding of the ß-cell maturation process, emphasize recent literature on novel heterogeneity markers, and offer perspectives on reconciling the findings from these two areas.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Biomarcadores , Humanos , Células Secretoras de Insulina/metabolismo
8.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497111

RESUMO

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Assuntos
Ilhotas Pancreáticas , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Ilhotas Pancreáticas/metabolismo , Esferoides Celulares/metabolismo , Hipóxia Celular , Sobrevivência Celular
9.
FASEB J ; 37(11): e23200, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773756

RESUMO

Epidemiological studies have reported discrepant findings on the relationship between folic acid intake during pregnancy and risk for gestational diabetes mellitus (GDM). To begin to understand how folic acid impacts metabolic health during pregnancy, we determined the effects of excess folic acid supplementation (5× recommendation) on maternal and fetal offspring metabolic health. Using a mouse (female C57BL/6J) model of diet-induced diabetes in pregnancy (western diet) and control mice, we show that folic acid supplementation improved insulin sensitivity in the female mice fed the western diet and worsened insulin sensitivity in control mice. We found no unmetabolized folic acid in liver from supplemented mice suggesting the metabolic effects of folic acid supplementation are not due to unmetabolized folic acid. Male fetal (gestational day 18.5) offspring from folic acid supplemented dams (western and control) had greater beta cell mass and density than those from unsupplemented dams; this was not observed in female offspring. Differential sex-specific hepatic gene expression profiles were observed in the fetal offspring from supplemented dams but this differed between western and controls. Our findings suggest that folic acid supplementation affects insulin sensitivity in female mice, but is dependent on their metabolic phenotype and has sex-specific effects on offspring pancreas and liver.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Camundongos , Humanos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Suplementos Nutricionais , Efeitos Tardios da Exposição Pré-Natal/metabolismo
10.
Neuroendocrinology ; : 1-17, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599200

RESUMO

BACKGROUND: Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY: The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES: This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.

11.
Diabetes Obes Metab ; 26(1): 16-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845573

RESUMO

The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting ß-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of ß-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing ß-cell dedifferentiation or promoting the transdifferentiation of non-ß-cells towards an insulin-positive ß-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing ß-cell loss or generating new ß-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent ß-cell decline in diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Plasticidade Celular , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Transdiferenciação Celular
12.
Gen Comp Endocrinol ; 348: 114452, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246291

RESUMO

Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.


Assuntos
Ilhotas Pancreáticas , Resistina , Adulto , Animais , Feminino , Humanos , Ovinos , Resistina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucagon , Dieta/veterinária , Glucose
13.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892122

RESUMO

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Assuntos
Separação Celular , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Separação Celular/métodos , Doadores Vivos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Insulina/metabolismo , Glucose/metabolismo , Secreção de Insulina
14.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892240

RESUMO

A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.


Assuntos
Glucagon , Glucose , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Glucose/metabolismo , Animais , Insulina/metabolismo , Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ratos , Palmitatos/metabolismo , Palmitatos/farmacologia , Oxirredução/efeitos dos fármacos
15.
Semin Cell Dev Biol ; 119: 130-139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34561168

RESUMO

Growing evidence places tissue-resident macrophages as essential gatekeepers of metabolic organ homeostasis, including the adipose tissue and the pancreatic islets. Therein, macrophages may adopt specific phenotypes and ensure local functions. Recent advances in single cell genomic analyses provide a comprehensive map of adipose tissue macrophage subsets and their potential roles are now better apprehended. Whether they are beneficial or detrimental, macrophages overall contribute to the proper adipose tissue expansion under steady state and during obesity. By contrast, macrophages residing inside pancreatic islets, which may exert fundamental functions to fine tune insulin secretion, have only started to attract attention and their cellular heterogeneity remains to be established. The present review will focus on the latest findings exploring the phenotype and the properties of macrophages in adipose tissue and pancreatic islets, questioning early beliefs and future perspectives in the field of immunometabolism.


Assuntos
Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Animais , Homeostase , Humanos , Camundongos , Transdução de Sinais
16.
Diabetologia ; 66(3): 551-566, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36508037

RESUMO

AIMS/HYPOTHESIS: B cells play an important role in driving the development of type 1 diabetes; however, it remains unclear how they contribute to local beta cell destruction during disease progression. Here, we use gene expression profiling of B cell subsets identified in inflamed pancreatic tissue to explore their primary functional role during the progression of autoimmune diabetes. METHODS: Transcriptional profiling was performed on FACS-sorted B cell subsets isolated from pancreatic islets and the pancreatic lymph nodes of NOD mice. RESULTS: B cells are highly modified by the inflamed pancreatic tissue and can be distinguished by their transcriptional profile from those in the lymph nodes. We identified both a discrete and a core shared gene expression profile in islet CD19+CD138- and CD19+CD138+ B cell subsets, the latter of which is known to have enriched autoreactivity during diabetes development. On localisation to pancreatic islets, compared with CD138- B cells, CD138+ B cells overexpress genes associated with adhesion molecules and growth factors. Their shared signature consists of gene expression changes related to the differentiation of antibody-secreting cells and gene regulatory networks associated with IFN signalling pathways, proinflammatory cytokines and Toll-like receptor (TLR) activation. Finally, abundant TLR7 expression was detected in islet B cells and was enhanced specifically in CD138+ B cells. CONCLUSIONS/INTERPRETATION: Our study provides a detailed transcriptional analysis of islet B cells. Specific gene signatures and interaction networks have been identified that point towards a functional role for B cells in driving autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Perfilação da Expressão Gênica
17.
Diabetologia ; 66(4): 724-740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36538064

RESUMO

AIMS/HYPOTHESIS: Islets have complex heterogeneity and subpopulations. Cell surface markers representing alpha, beta and delta cell subpopulations are urgently needed for investigations to explore the compositional changes of each subpopulation in obesity progress and diabetes onset, and the adaptation mechanism of islet metabolism induced by a high-fat diet (HFD). METHODS: Single-cell RNA sequencing (scRNA-seq) was applied to identify alpha, beta and delta cell subpopulation markers in an HFD-induced mouse model of glucose intolerance. Flow cytometry and immunostaining were used to sort and assess the proportion of each subpopulation. Single-cell proteomics was performed on sorted cells, and the functional status of each alpha, beta and delta cell subpopulation in glucose intolerance was deeply elucidated based on protein expression. RESULTS: A total of 33,999 cells were analysed by scRNA-seq and clustered into eight populations, including alpha, beta and delta cells. For alpha cells, scRNA-seq revealed that the Ace2low subpopulation had downregulated expression of genes related to alpha cell function and upregulated expression of genes associated with beta cell characteristics in comparison with the Ace2high subpopulation. The impaired function and increased fragility of ACE2low alpha cells exposure to HFD was further suggested by single-cell proteomics. As for beta cells, the CD81high subpopulation may indicate an immature signature of beta cells compared with the CD81low subpopulation, which had robust function. We also found differential expression of Slc2a2 in delta cells and a potentially stronger cellular function and metabolism in GLUT2low delta cells than GLUT2high delta cells. Moreover, an increased proportion of ACE2low alpha cells and CD81low beta cells, with a constant proportion of GLUT2low delta cells, were observed in HFD-induced glucose intolerance. CONCLUSIONS/INTERPRETATION: We identified ACE2, CD81 and GLUT2 as surface markers to distinguish, respectively, alpha, beta and delta cell subpopulations with heterogeneous maturation and function. The changes in the proportion and functional status of islet endocrine subpopulations reflect the metabolic adaptation of islets to high-fat stress, which weakened the function of alpha cells and enhanced the function of beta and delta cells to bring about glycaemic homeostasis. Our findings provide a fundamental resource for exploring the mechanisms maintaining each islet endocrine subpopulation's fate and function in health and disease. DATA AVAILABILITY: The scRNA-seq analysis datasets from the current study are available in the Gene Expression Omnibus (GEO) repository under the accession number GSE203376.


Assuntos
Intolerância à Glucose , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Intolerância à Glucose/metabolismo , Dieta Hiperlipídica , Insulina/metabolismo , Proteômica , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Análise de Sequência de RNA
18.
Diabetologia ; 66(2): 354-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280617

RESUMO

AIMS/HYPOTHESIS: Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. METHODS: In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. RESULTS: We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. CONCLUSIONS/INTERPRETATION: Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Estresse do Retículo Endoplasmático/genética , Glucose/metabolismo
19.
Diabetologia ; 66(8): 1544-1556, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36988639

RESUMO

AIMS/HYPOTHESIS: TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS: EndoC-ßH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS: PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION: We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/farmacologia , Citocinas/metabolismo , Morte Celular , Células Secretoras de Insulina/metabolismo , Interferon-alfa/farmacologia
20.
Diabetes Metab Res Rev ; 39(8): e3696, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466955

RESUMO

AIMS: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptidil Dipeptidase A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA