RESUMO
Mollusc shells are a result of the deposition of crystalline and amorphous calcite catalyzed by enzymes and shell matrix proteins (SMP). Developing a detailed understanding of bivalve mollusc biomineralization pathways is complicated not only by the multiplicity of shell forms and microstructures in this class, but also by the evolution of associated proteins by domain co-option and domain shuffling. In spite of this, a minimal biomineralization toolbox comprising proteins and protein domains critical for shell production across species has been identified. Using a matched pair design to reduce experimental noise from inter-individual variation, combined with damage-repair experiments and a database of biomineralization SMPs derived from published works, proteins were identified that are likely to be involved in shell calcification. Eighteen new, shared proteins likely to be involved in the processes related to the calcification of shells were identified by the analysis of genes expressed during repair in Crassostrea gigas, Mytilus edulis, and Pecten maximus. Genes involved in ion transport were also identified as potentially involved in calcification either via the maintenance of cell acid-base balance or transport of critical ions to the extrapallial space, the site of shell assembly. These data expand the number of candidate biomineralization proteins in bivalve molluscs for future functional studies and define a minimal functional protein domain set required to produce solid microstructures from soluble calcium carbonate. This is important for understanding molluscan shell evolution, the likely impacts of environmental change on biomineralization processes, materials science, and biomimicry research.
Assuntos
Crassostrea , Mytilus edulis , Exoesqueleto/metabolismo , Animais , Biomineralização , Calcificação Fisiológica/genética , Crassostrea/genética , Mytilus edulis/genética , Mytilus edulis/metabolismoRESUMO
The Lyme Bay marine protected area (MPA) hosts a valuable population of king scallop Pecten maximus L. Recently, an Endozoicomonas-like organism (ELO), infecting host gill epithelial tissue, was associated with king scallop mass mortality events within the Lyme Bay MPA. Currently, very little is known about its transmission and survival outside the host. In this investigation, animals collected outside of reported mortality events showed high levels of ELO infection. Gill tissue disruption and the release of bacteria into the interlamellar space was seen histologically, suggesting shedding of ELO from host animals. To investigate pathogen survival outside the host, infected scallops were maintained in static water for a 24 h period, and then removed. Over the subsequent 8 d, water samples were collected and the quantity of ELO 16S rRNA transcript was measured by TaqManTM quantitative PCR (qPCR). The 16S rRNA transcript quantity was stable outside the host for 6 d before bacteria survival declined 2 logs (7.9 × 108 16S rRNA to 2.3 × 106 transcripts), suggesting that ELO can survive independently outside the host organism. The ELO-specific qPCR probe can therefore be used in future field studies of ELO prevalence within the environment and fauna of the Lyme Bay MPA.
Assuntos
Pecten , Animais , Brânquias , RNA Ribossômico 16SRESUMO
Most publications devoted to the cryopreservation of mollusc sperm have focused on the definition of technical protocols, avoiding the description of sperm quality after thawing. The present study investigated the effects of cryopreservation on sperm quality in the great scallop. Wild scallop were fished during the natural spawning period and conditioned in the hatchery before use. Sperm samples were obtained after intragonadal injection of serotonin and cryopreserved using a previously published protocol. Sperm quality was assessed using a panel of four parameters: sperm motility characteristics, using a computer assisted sperm analysis plugin with Image J, intracellular ATP content using an ATP-Lite kit, sperm integrity, using flow cytometry and sperm morphology, using transmission electron microscopy. For each parameter, fresh (control) and thawed spermatozoa were compared. A significant decrease of both the percentage of motile spermatozoa (reduction: 75%) and sperm swimming speed (86%) were observed for thawed sperm compared with fresh sperm. The percentage of living spermatozoa, as assessed using flow cytometry, was significantly lower for thawed sperm (72.4±2.5%) compared with fresh sperm (86.4±1.1). However, no significant difference of intracellular sperm ATP content was observed between fresh and thawed sperm. Post thawing, while some spermatozoa showed little or no morphological differences compared with fresh sperm, others had undergone drastic changes, including swelling of the plasma membrane, structural alterations of the chromatin and damage to mitochondria. In conclusion, the descriptive parameters studied in the present work showed that the quality of thawed great scallop sperm was lower than that of fresh cells but was still sufficient for use in aquaculture programs and sperm cryobanking for this species.
Assuntos
Criopreservação/métodos , Pecten/metabolismo , Análise do Sêmen/métodos , Frutos do Mar/análise , Espermatozoides/metabolismo , Animais , MasculinoRESUMO
Pecten maximus, the king scallop, is a bivalve species with important commercial value for both fisheries and aquaculture, traditionally consumed in several European countries. Major problems in larval rearing, however, still limit hatchery-based seed production. High mortalities during early larval stages, likely related to bacterial pathogens, represent the most relevant bottleneck. To address this issue, understanding host defense mechanisms against microbes is extremely important. In this study next-generation RNA-sequencing was carried on scallop hemocytes. To enrich for immune-related transcripts, cDNA libraries from hemocytes challenged in vivo with inactivated-Vibrio anguillarum and in vitro with pathogen-associated molecular patterns, as well as unchallenged controls, were sequenced yielding 216,444,674 sequence reads. De novo assembly of the scallop hemocyte transcriptome consisted of 73,732 contigs (31% annotated). A total of 934 contigs encoded proteins with a known immune function, grouped into several functional categories. Particular attention was reserved to Toll-like receptors (TLRs), a family of pattern recognition receptors (PRRs) involved in non-self recognition. Through mining the scallop hemocyte transcriptome, at least four TLRs could be identified. The organization of canonical TLR domains demonstrated that single cysteine cluster and multiple cysteine cluster TLRs co-exist in this species. In addition, preliminary data concerning their mRNA level following bacterial challenge suggested that different members of this family could exhibit opposite responses to pathogenic stimuli. Finally, a global analysis of differential expression comparing gene-expression levels in in vitro and in vivo stimulated hemocytes against controls provided evidence on a large set of transcripts involved in the great scallop immune response.
Assuntos
Hemócitos/metabolismo , Pecten/genética , Pecten/imunologia , Filogenia , Transcriptoma/genética , Animais , Sequência de Bases , Defensinas/genética , Defensinas/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de RNA , EspanhaRESUMO
Domoic acid (DA) is a potent neurotoxin produced by diatoms of the genus Pseudo-nitzschia and is responsible for Amnesic Shellfish Poisoning (ASP) in humans. Some fishery resources of high commercial value, such as the king scallop Pecten maximus, are frequently exposed to toxic Pseudo-nitzschia blooms and are capable of accumulating high amounts of DA, retaining it for months or even a few years. This poses a serious threat to public health and a continuous economical risk due to fishing closures of this resource in the affected areas. Recently, it was hypothesized that trapping of DA within autophagosomic-vesicles could be one reason explaining the long retention of the remaining toxin in P. maximus digestive gland. To test this idea, we follow the kinetics of the subcellular localization of DA in the digestive glands of P. maximus during (a) the contamination process - with sequential samplings of scallops reared in the field during 234 days and naturally exposed to blooms of DA-producing Pseudo-nitzschia australis, and (b) the decontamination process - where highly contaminated scallops were collected after a natural bloom of toxic P. australis and subjected to DA-depuration in the laboratory for 60 days. In the digestive gland, DA-depuration rate (0.001 day-1) was much slower than contamination kinetics. The subcellular analyses revealed a direct implication of early autophagy in DA sequestration throughout contamination (r = 0.8, P < 0.05), while the presence of DA-labeled residual bodies (late autophagy) appeared to be strongly and significantly related to slow DA-depuration (r = -0.5) resembling an analogous DA-tattooing in the digestive glands of P. maximus. This work provides new evidence about the potential physiological mechanisms involved in the long retention of DA in P. maximus and represents the baseline to explore procedures to accelerate decontamination in this species.
Assuntos
Diatomáceas , Ácido Caínico/análogos & derivados , Pecten , Pectinidae , Intoxicação por Frutos do Mar , Tatuagem , Animais , Humanos , Toxinas MarinhasRESUMO
One of the biggest challenges of the 21st century is to reduce carbon emissions and offshore wind turbines seem to be an efficient solution. However, during the installation phase, high levels of noise are emitted whose impacts remain not well known, particularly on benthic marine invertebrates displaying a bentho-planktonic life-cycle. For one century, larval settlement and subsequent recruitment has been considered as a key topic in ecology as it determines largely population renewal. Whereas several recent studies have shown that trophic pelagic but also natural soundscape cues could trigger bivalve settlement, the role of anthropogenic noise remains poorly documented. Therefore, we conducted experiments to assess potential interacting effects of diet and pile driving or drilling sounds on the great scallop (Pecten maximus) larval settlement. We demonstrate here that pile driving noise stimulates both growth and metamorphosis as well as it increases the total lipid content of competent larvae. Conversely, drilling noise reduces both survival and metamorphosis rates. For the first time, we provide evidence of noise impacts associated to MREs installation on P. maximus larvae and discuss about potential consequences on their recruitment.
Assuntos
Pecten , Animais , Larva , Som , Ruído , Metamorfose BiológicaRESUMO
The king scallop, Pecten maximus is a highly valuable seafood in Europe. Over the last few years, its culture has been threatened by toxic microalgae during harmful algal blooms, inducing public health concerns. Indeed, phycotoxins accumulated in bivalves can be harmful for human, especially paralytic shellfish toxins (PST) synthesized by the microalgae Alexandrium minutum. Deleterious effects of these toxic algae on bivalves have also been reported. However, its impact on bivalves such as king scallop is far from being completely understood. This study combined ecophysiological and proteomic analyzes to investigate the early response of juvenile king scallops to a short term exposure to PST producing A. minutum. Our data showed that all along the 2-days exposure to A. minutum, king scallops exhibited transient lower filtration and respiration rates and accumulated PST. Significant inter-individual variability of toxin accumulation potential was observed among individuals. Furthermore, we found that ingestion of toxic algae, correlated to toxin accumulation was driven by two factors: 1/ the time it takes king scallop to recover from filtration inhibition and starts to filtrate again, 2/ the filtration level to which king scallop starts again to filtrate after inhibition. Furthermore, at the end of the 2-day exposure to A. minutum, proteomic analyzes revealed an increase of the killer cell lectin-like receptor B1, involved in adaptative immune response. Proteins involved in detoxification and in metabolism were found in lower amount in A. minutum exposed king scallops. Proteomic data also showed differential accumulation in several structure proteins such as ß-actin, paramyosin and filamin A, suggesting a remodeling of the mantle tissue when king scallops are subjected to an A. minutum exposure.
Assuntos
Dinoflagellida , Pecten , Pectinidae , Animais , Dinoflagellida/fisiologia , Imunidade , Toxinas Marinhas/toxicidade , Pecten/metabolismo , Pectinidae/metabolismo , Proteômica , Alimentos Marinhos , Frutos do MarRESUMO
EFSA was asked by the European Commission to provide information on the levels of domoic acid (DA) in whole scallops that would ensure that levels in edible parts are below the regulatory limit after shucking. This should include five species of scallops. In addition, EFSA was asked to recommend the number of scallops to be used in an analytical sample. To address these questions, EFSA received suitable data on DA for only one scallop species, Pecten maximus, i.e. data on pooled samples of edible and non-edible parts. A large part of the concentration levels was above the limit of quantification (LOQ) and only these data were used for the assessment. Shucking in most cases resulted in a strong decrease in the toxin levels. Statistical analysis of the data showed that levels in whole scallops should not exceed 24 mg DA/kg, 59 mg DA/kg and 127 mg DA/kg to ensure that levels in, respectively, gonads, muscle and muscle plus gonads are below the regulatory limit of 20 mg DA/kg with 99% certainty. Such an analysis was not possible for the other scallop species. In the absence of data from member states, published data of variations between scallops were used to calculate the sample size to ensure a 95% correct prediction on whether the level in scallops in an area or lot is correctly predicted to be compliant/non-compliant. It was shown that 10 scallops per sample would be sufficient to predict with 95% certainty if DA levels in the area/lot were twofold below or above the regulatory limit for the highest reported coefficient of variance (CV) of 1.06. To predict with 95% certainty for levels between 15 and 27 mg DA/kg, a pooled sample of more than 30 scallops would have to be tested.
RESUMO
Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms-e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.-are the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve species-oyster (Crassostrea gigas) and scallop (Pecten maximus)-and two toxic Pseudo-nitzschia species-P. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 × 10-3 and 5.1 × 10-3 µg g-1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms.
Assuntos
Crassostrea/fisiologia , Diatomáceas/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Ácido Caínico/toxicidade , Toxinas Marinhas/toxicidade , Neurotoxinas/toxicidade , Pecten/fisiologia , Animais , Haptófitas/fisiologia , Ácido Caínico/análogos & derivados , Intoxicação por Frutos do Mar , Especificidade da EspécieRESUMO
The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.
Assuntos
Exoesqueleto/química , Condrócitos/efeitos dos fármacos , Matriz Extracelular , Pecten/química , Idoso , Idoso de 80 Anos ou mais , Agrecanas/genética , Agrecanas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , FenótipoRESUMO
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7µgg-1 (now expressed as mgkg-1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68µgg-1 (now mgkg-1) to <20µgg-1 (now mgkg-1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.
Assuntos
Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Intoxicação por Frutos do Mar , Animais , Diatomáceas/metabolismo , Ácido Caínico/metabolismo , Escócia , Frutos do MarRESUMO
Five strains were isolated from gonad of Great scallop (Pecten maximus) broodstock in a Norwegian hatchery. The study of 16S rRNA gene sequences showed that these isolates belong to Neptunomonas phycophila, a bacterium originally isolated from a symbiont of the anemone Aiptasia tagetes from Puerto Rico. The gyrB and rpoB genes sequences confirmed the affiliation of the scallop isolates to this species. Phenotypic characterization was performed and some differences between the Norwegian isolates and the type strain of N. phycophila were detected, such as ranges of temperature, pH, and tolerance to salinity or the use of several substrates as sole carbon source which lead to an emended description of the species. The strain 3CM2.5 showed phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. The whole genomes of the scallop strain 3CM2.5 and type strain of the species CECT 8716T were obtained and the annotation of these genomes revealed the presence of genes involved in degradation of aromatic compounds in both strains. Results obtained not only widen the geographical and host ranges of N. phycophila, but also point out possible biotechnological applications for this bacterial species.
Assuntos
Oceanospirillaceae/isolamento & purificação , Pectinidae/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Biotecnologia , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genoma Bacteriano , Gônadas/microbiologia , Noruega , Oceanospirillaceae/classificação , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Pectinidae/crescimento & desenvolvimento , Fosfatidiletanolaminas/metabolismo , FilogeniaRESUMO
The biomass and composition of bycatch from king scallop dredge fisheries was assessed and compared between the English Channel, Cardigan Bay in Wales and around the Isle of Man. Bycatch composition varied significantly at localised, and broad, geographic scales. The mean proportion of scallop dredge bycatch biomass in the English Channel was 19% of total catch biomass. The proportion of bycatch was lower in Cardigan Bay (15%) but notably higher around the Isle of Man (53%). The proportion of individual bycatch species in dredge catches were low, therefore scallop dredging is unlikely to cause a substantial increase the population mortality of individual commercially fished species beyond that caused by the target fisheries for those species, or bycatches of other fisheries. The amount and mortality of organisms left on the seabed in the dredge path was not quantified in this study but should also be considered in management of the fishery. The discard rate of finfish and shellfish of commercial value from the king scallop dredge fishery in the English Channel was between 18 and 100%, with a higher rate of discarding occurring in the eastern English Channel compared to the west. The clear regional differences in bycatch composition and variation in the quantity of discards mean that an area by area approach to managing bycatch species is required in relation to the king scallop dredge fishery.
Assuntos
Pesqueiros/estatística & dados numéricos , Pecten , Frutos do Mar/estatística & dados numéricos , Animais , Ecossistema , País de GalesRESUMO
Nine isolates obtained from a great scallop hatchery in Norway were characterized using a polyphasic approach. Strains were Gram-negative, aerobic and motile rods with oxidative metabolism. Phylogenetic analysis based on the sequences of 16S rRNA and rpoB genes showed that these strains formed two different groups associated with members of the genus Neptuniibacter. DNA-DNA hybridization (DDH) and Average Nucleotide Identity (ANI) demonstrated that the isolates constituted two novel species of this genus, which can be phenotypically differentiated from their closest relatives. The names Neptuniibacter marinus sp. nov. and Neptuniibacter pectenicola sp. nov are proposed, with ATR 1.1T (=CECT 8938T=DSM 100783T) and LFT 1.8T (=CECT 8936T=DSM 100781T) as respective type strains.
Assuntos
Oceanospirillaceae/classificação , Oceanospirillaceae/isolamento & purificação , Pecten/microbiologia , Aerobiose , Animais , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Locomoção , Noruega , Hibridização de Ácido Nucleico , Oceanospirillaceae/genética , Oceanospirillaceae/fisiologia , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations.
RESUMO
Dinoflagellates of the genus Alexandrium are a major cause of harmful algal blooms (HABs) that have increasingly disrupted coastal ecosystems for the last several decades. Microalgae from the genus Alexandrium are known to produce paralytic shellfish toxins (PST) but also bioactive extracellular compounds (BEC) that can display cytotoxic, allelopathic, ichtyotoxic or haemolytic effects upon marine organisms. The objective of this experimental study was to assess the effects of PST and BEC produced by A. minutum upon juvenile great scallops Pecten maximus. Scallops were exposed for one week to two different strains of A. minutum, the first producing both PST and BEC and the second producing only BEC. Escape response to starfish, daily shell growth, histological effects, and accumulation of PST were recorded after one week of exposure, and after two subsequent weeks of recovery. Daily shell growth was delayed three days in scallops exposed to the BEC-producing A. minutum strain, probably during the three first days of exposure. An increase of reaction time to predators was observed in scallops exposed to the BEC condition, suggesting that BEC may have altered sensing processes. Scallops exposed to PST displayed a less-efficient escape response and muscular damage which could reflect the effects of paralytic toxins upon the nervous system of scallops. This study demonstrates contrasting effects of the distinct toxic compounds produced by A. minutum upon marine bivalves, thus highlighting the importance to better characterize these extracellular, bioactive compounds to better understand responses of other marine organisms.
Assuntos
Toxinas Marinhas/toxicidade , Pectinidae/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Dinoflagellida/química , Pectinidae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidadeRESUMO
Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations.
Assuntos
Bivalves/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Exoesqueleto/crescimento & desenvolvimento , Animais , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Calcificação Fisiológica , Crassostrea/genética , Crassostrea/crescimento & desenvolvimento , Crassostrea/metabolismo , Mya/genética , Mya/crescimento & desenvolvimento , Mya/metabolismo , Mytilus edulis/genética , Mytilus edulis/crescimento & desenvolvimento , Mytilus edulis/metabolismo , Pecten/genética , Pecten/crescimento & desenvolvimento , Pecten/metabolismoRESUMO
A next-generation sequencing (NGS) approach was used to study the microbiota associated to Pecten maximus broodstock, applying pyrosequencing of PCR-amplified V1-V4 16S rRNA gene regions. We analysed the resident bacterial communities in female and male scallop gonads before and after spawning. DNA samples were amplified and quality-filtered reads were assigned to family and genus taxonomic levels using the Ribosomal Database Project classifier. A total of 18,520 sequences were detected, belonging to 13 phyla, including Proteobacteria (55%), Bacteroidetes (11,7%), Firmicutes (3%), Actinobacteria (2%) and Spirochaetes (1,2%), and 110 genera. The major fraction of the sequences detected corresponded to Proteobacteria, Beta- and Gammaprotebacteria being the most abundant classes. The microbiota of P. maximus gonad harbour a wide diversity, however differences on male and female samples were observed, where female gonad samples show a larger number of genera and families. The dominant bacterial genera appeared to be Delftia, Acinetobacter, Hydrotalea, Aquabacterium, Bacillus, Sediminibacterium, Sphingomonas, and Pseudomonas that were present among the four analysed samples. This next generation sequencing technique, applied for the first time in P. maximus (great scallop) gonads was useful for the study of the bacterial communities in this mollusc, unravelling the great bacterial diversity in its microbiota. [Int Microbiol 19(2): 93-99(2016)].
Assuntos
Bactérias/classificação , Gônadas/microbiologia , Microbiota , Pecten/microbiologia , Animais , DNA Bacteriano/genética , Feminino , Masculino , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
RNA-Seq transcriptome data were generated from mantle tissue of the great scallop, Pecten maximus. The consensus data were produced from a time course series of animals subjected to a 56-day thermal challenge at 3 different temperatures. A total of 26,064 contigs were assembled de novo, providing a useful resource for both the aquaculture community and researchers with an interest in mollusc shell production.
Assuntos
Pecten/genética , Temperatura , Transcriptoma/genética , Animais , Aquicultura , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Dados de Sequência Molecular , Pecten/crescimento & desenvolvimento , Pecten/metabolismo , Análise de Sequência de RNARESUMO
Comparing populations residing in contrasting environments is an efficient way to decipher how organisms modulate their physiology. Here we present the proteomic signatures of two populations in a non-model marine species, the great scallop Pecten maximus, living in the northern (Hordaland, Norway) and in the center (Brest, France) of this species' latitudinal distribution range. The results showed 38 protein spots significantly differentially accumulated in mantle tissues between the two populations. We could unambiguously identify 11 of the protein spots by Maldi TOF-TOF mass spectrometry. Eight proteins corresponded to different isoforms of actin, two were identified as filamin, another protein related to the cytoskeleton structure, and one was the protease elastase. Our results suggest that scallops from the two populations assayed may modulate their cytoskeleton structures through regulation of intracellular pools of actin and filamin isoforms to better adapt to their environment. BIOLOGICAL SIGNIFICANCE: Marine mollusks are non-model organisms that have been poorly studied at the proteomic level, and this article is the first studying the great scallop (P. maximus) at this level. Furthermore, it addresses population proteomics, a new promising field, especially in environmental sciences. This article is part of a Special Issue entitled: Proteomics of non-model organisms.