Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Biophys J ; 51(6): 493-502, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978176

RESUMO

The skin of amphibians is widely exploited as rich sources of membrane active peptides that differ in chain size, polypeptide net charge, secondary structure, target selectivity and toxicity. In this study, two small antimicrobial peptides, temporin-Ra and temporin-Rb, originally isolated from the skin of the European marsh frog (Rana ridibunda), described as active against pathogen bacteria and presenting low toxicity to eukaryotic cells were synthesized and had their physicochemical properties and mechanism of action investigated. The temporin peptides were examined in aqueous solution and in the presence of membrane models (lipid monolayers, micelles, lipid bilayers and vesicles). A combined approach of bioinformatics analyses, biological activity assays, surface pressure measurements, synchrotron radiation circular dichroism spectroscopy, and oriented circular dichroism spectroscopy were employed. Both peptides were able to adsorb at a lipid-air interface with a negative surface charge density, and efficiently disturb the lipid surface packing. A disorder-to-helix transition was observed on the secondary structure of both peptides when either in a non-polar environment or interacting with model membranes containing a negative net charge density. The binding of both temporin-Ra and temporin-Rb to membrane models is modulated by the presence of negatively charged lipids in the membrane. The amphipathic helix induced in temporin-Ra is oriented parallel to the membrane surface in negatively charged or in zwitterionic lipid bilayers, with no tendency for realignment after binding. Temporin-Rb, instead, assumes a ß-sheet conformation when deposited into oriented stacked lipid bilayers. Due to their short size and simple composition, both peptides are quite attractive for the development of new classes of peptide-based anti-infective drugs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Bicamadas Lipídicas , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Bicamadas Lipídicas/química , Estrutura Secundária de Proteína
2.
Chem Pharm Bull (Tokyo) ; 70(1): 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980725

RESUMO

Biomembranes composed of various proteins and lipids play important roles in cellular functions, such as signal transduction and substance transport. In addition, some bioactive peptides and pathogenic proteins target membrane proteins and lipids to exert their effects. Therefore, an understanding of dynamic and complex intermolecular interactions among these membrane constituents is needed to elucidate their mechanisms. This review summarizes the major research carried out in the author's laboratory on how lipids and their inhomogeneous distributions regulate the structures and functions of antimicrobial peptides and Alzheimer's amyloid ß-protein. Also, how to detect transmembrane helix-helix and membrane protein-protein interactions and how they are modulated by lipids are discussed.


Assuntos
Peptídeos beta-Amiloides/química , Membrana Celular/química , Proteínas/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Humanos , Lipídeos/química , Ligação Proteica , Proteínas/metabolismo
3.
Appl Microbiol Biotechnol ; 104(24): 10531-10539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170327

RESUMO

Antimicrobial peptides (AMPs) are recognized as promising safe alternatives to antibiotics for its low drug-resistance. Brevilaterin B, a newly discovered antimicrobial lipopeptide produced by Brevibacillus laterosporus S62-9, exhibits efficient antibacterial activity on Listeria monocytogenes with a minimum inhibitory concentration of 1 µg mL-1. The present research aimed to investigate the antibacterial mechanism of brevilaterin B against Listeria monocytogenes. Brevilaterin B caused membrane depolarization and the breakup of the cytomembrane as measured by 3,3-dipropylthiadicarbocyanine iodide and transmission electron microscopy, respectively. Using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (7:3) as a model membrane, results proved that brevilaterin B could bind to liposomes, integrate into the lipid bilayer, and consequently increase the permeability of liposomes to calcein. The secondary structure of brevilaterin B also changed from an unstructured coil to a mainly ß-sheet conformation as measured by circular dichroism. Brevilaterin B exhibits antibacterial activity by a membrane interaction mechanism, which provides a theoretical basis for using brevilaterin B as a promising natural and effective antimicrobial agent against pathogenic bacteria. KEY POINTS: • Brevilaterin B exhibited antibacterial activity against Listeria monocytogenes. • Brevilaterin B exhibited membrane interaction mechanism. • Brevilaterin B showed conformational change when interacted with liposome.


Assuntos
Anti-Infecciosos , Listeria monocytogenes , Antibacterianos/farmacologia , Brevibacillus , Lipopeptídeos/farmacologia
4.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505894

RESUMO

Cell-penetrating peptides (CPPs) are short peptides that can translocate and transport cargoes into the intracellular milieu by crossing biological membranes. The mode of interaction and internalization of cell-penetrating peptides has long been controversial. While their interaction with anionic membranes is quite well understood, the insertion and behavior of CPPs in zwitterionic membranes, a major lipid component of eukaryotic cell membranes, is poorly studied. Herein, we investigated the membrane insertion of RW16 into zwitterionic membranes, a versatile CPP that also presents antibacterial and antitumor activities. Using complementary approaches, including NMR spectroscopy, fluorescence spectroscopy, circular dichroism, and molecular dynamic simulations, we determined the high-resolution structure of RW16 and measured its membrane insertion and orientation properties into zwitterionic membranes. Altogether, these results contribute to explaining the versatile properties of this peptide toward zwitterionic lipids.


Assuntos
Membrana Celular/química , Peptídeos Penetradores de Células/química , Arginina/química , Dicroísmo Circular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
5.
Biochim Biophys Acta Biomembr ; 1860(5): 1015-1021, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29317201

RESUMO

Permeabilization of the Endoplasmic Reticulum (ER) is instrumental in the progression of host-cell infection by many viral pathogens. We have described that permeabilization of ER model membranes by the pore-forming domain of the Classical Swine Fever Virus (CSFV) p7 protein depends on two sequence determinants: the C-terminal transmembrane helix, and the preceding polar loop that regulates its activity. Here, by combining ion-channel activity measurements in planar lipid bilayers with imaging of single Giant Unilamellar Vesicles (GUVs), we demonstrate that point substitutions directed to conserved residues within these regions affect ER-like membrane permeabilization following distinct mechanisms. Whereas the polar loop appeared to be involved in protein insertion and oligomerization, substitution of residues predicted to face the lumen of the pore inhibited large conducting channels (>1 nS) over smaller ones (120 pS). Quantitative analyses of the ER-GUV distribution as a function of the solute size revealed a selective inhibition for the permeation of solutes with sizes larger than 4 kDa, further demonstrating that the mutation targeting the transmembrane helix prevented formation of the large pores. Collectively, our data support the idea that the pore-forming domain of p7 may assemble into finite pores with approximate diameters of 1 and 5 nm. Moreover, the observation that the mutation interfering with formation of the larger pores can hamper virus production without affecting ER localization or homo-oligomerization, suggests prospective strategies to block/attenuate pestiviruses.


Assuntos
Permeabilidade da Membrana Celular/genética , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/patogenicidade , Retículo Endoplasmático/metabolismo , Canais Iônicos/fisiologia , Mutação , Porinas/genética , Sequência de Aminoácidos , Retículo Endoplasmático/fisiologia , Células HEK293 , Humanos , Canais Iônicos/genética , Transporte de Íons/genética , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/genética , Modelos Moleculares , Mutação/fisiologia , Porosidade , Domínios Proteicos/genética , Proteínas Virais/genética
6.
Biochim Biophys Acta ; 1858(4): 855-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851777

RESUMO

The vesicular protein synaptobrevin II (sybII) constitutes a central component of the SNARE complex, which mediates vesicle fusion in neuronal exocytosis. Previous studies revealed that the transmembrane domain (TMD) of sybII is playing a critical role in the fusion process and is involved in all distinct fusion stages from priming to fusion pore opening. Here, we analyzed sequence-dependent effects of sybII and of mutants of sybII on both structure and flexibility of the protein and the interactions with a phospholipid bilayer by means of microsecond atomistic simulations. The sybII TMD was found to direct the folding of both the juxtamembrane helix and of the connecting linker and thus to influence both the intrinsic helicity and flexibility. Fusion active peptides revealed two helical segments, one for the juxtamembrane region and one for the TMD, connected by a flexible linker. In contrast, a fusion-inactive poly-leucine TMD mutant assumes a structure with a comparably rigid linker that is suggested to hinder the formation of the trans-SNARE complex during fusion. Kinking of the TMD at the central glycine together with anchoring of the TMD via conserved tryptophans and a lysine in position 94 likely yields an enhanced flexibility of sybII for different membrane thickness. All studied peptides were found to deform the outer membrane layer by altering the lipid head group orientation, causing partial membrane dehydration and enhancing lipid protrusions. These effects weaken the integrity of the outer membrane layer and are attributed mainly to the highly charged linker and JM regions of sybII.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Proteínas SNARE/química , Proteína 2 Associada à Membrana da Vesícula/química , Motivos de Aminoácidos/genética , Animais , Membrana Celular/metabolismo , Exocitose , Glicina/química , Bicamadas Lipídicas/metabolismo , Fusão de Membrana/genética , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
7.
Biochim Biophys Acta ; 1848(2): 593-602, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445669

RESUMO

Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp~10(5)) and that they are located just below the lipid headgroups (~10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Triptofano/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células CHO , Membrana Celular/química , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Cricetulus , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Fenilalanina/química , Ligação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Eletricidade Estática , Relação Estrutura-Atividade
8.
Biochim Biophys Acta ; 1848(2): 554-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445678

RESUMO

Despite the intensive study of antibiotic-induced bacterial permeabilization, its kinetics and molecular mechanism remain largely elusive. A new methodology that extends the concept of the live-dead assay in flow cytometry to real time-resolved detection was used to overcome these limitations. The antimicrobial activity of pepR was monitored in time-resolved flow cytometry for three bacterial strains: Escherichia coli (ATCC 25922), E. coli K-12 (CGSC Strain 4401) and E. coli JW3596-1 (CGSC Strain 11805). The latter strain has truncated lipopolysaccharides (LPS) in the outer membrane. This new methodology provided information on the efficacy of the antibiotics and sheds light on their mode of action at membrane-level. Kinetic data regarding antibiotic binding and lytic action were retrieved. Membrane interaction and permeabilization events differ significantly among strains. The truncation of LPS moieties does not hamper AMP binding but compromises membrane disruption and bacterial killing. We demonstrated the usefulness of time-resolved flow cytometry to study antimicrobial-induced permeabilization by collecting kinetic data that contribute to characterize the action of antibiotics directly on bacteria.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lipopolissacarídeos/química , Bioensaio , Membrana Celular/química , Escherichia coli/química , Citometria de Fluxo/métodos , Corantes Fluorescentes , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Compostos Orgânicos , Propídio , Especificidade da Espécie , Espectrometria de Fluorescência , Fatores de Tempo
9.
Biochim Biophys Acta ; 1848(10 Pt A): 2277-89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26079051

RESUMO

The membrane interaction of peptides derived from maculatin 1.1 and caerin 1.1, with the sequence motif of N and C termini of maculatin 1.1, was compared in order to understand the role of these common sequence motifs, which encompass critical proline residues, on peptide secondary structure and on membrane binding and disruption in zwitterionic and anionic membranes. The peptides incorporated a single substitution with lysine or deletion of the central region to mimic the length of the antimicrobial peptides, citropin 1.1 and aurein 1.2. The impact of these changes in the sequence, length and physicochemical properties, on lytic activity and structure was assessed by dye-release from lipid vesicles and the change in the bilayer order as a function of membrane-bound peptide mass. All peptides adopted similar degrees of helical structure in both membrane systems. In addition, all peptide analogues were less active than either maculatin 1.1 or caerin 1.1 in dye release assays. The membrane binding was analyzed by dual polarization interferometry and the results showed that membrane binding was significantly affected by changes in the hydrophobic environment of Pro-15. Moreover, changes in the relative distribution of charge and hydrophobicity flanking Pro-15 also caused significant changes to the membrane order. Overall, the proline residue plays an important role in inducing a peptide structure that enhances the activity of these antimicrobial peptides.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/ultraestrutura , Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Prolina/química , Atrativos Sexuais/química , Sítios de Ligação , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Permeabilidade , Ligação Proteica , Conformação Proteica , Tensoativos/química
10.
Biochim Biophys Acta ; 1838(10): 2739-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016054

RESUMO

Antimicrobial peptides (AMPs) are important components of the innate immune system of animals, plants, fungi and bacteria and are recently under discussion as promising alternatives to conventional antibiotics. We have investigated two cecropin-like synthetic peptides, Gm1, which corresponds to the natural overall uncharged Galleria mellonella native peptide and ΔGm1, a modified overall positively charged Gm1 variant. We have analysed these peptides for their potential to inhibit the endotoxin-induced secretion of tumour necrosis factor-α (TNF-α) from human mononuclear cells. Furthermore, in a conventional microbiological assay, the ability of these peptides to inhibit the growth of the rough mutant bacteria Salmonella enterica Minnesota R60 and the polymyxin B-resistant Proteus mirabilis R45 was investigated and atomic force microscopy (AFM) measurements were performed to characterize the morphology of the bacteria treated by the two peptides. We have also studied their cytotoxic properties in a haemolysis assay to clarify potential toxic effects. Our data revealed for both peptides minor anti-inflammatory (anti-endotoxin) activity, but demonstrated antimicrobial activity with differences depending on the endotoxin composition of the respective bacteria. In accordance with the antimicrobial assay, AFM data revealed a stronger morphology change of the R45 bacteria than for the R60. Furthermore, Gm1 had a stronger effect on the bacteria than ΔGm1, leading to a different morphology regarding indentations and coalescing of bacterial structures. The findings verify the biophysical measurements with the peptides on model systems. Both peptides lack any haemolytic activity up to an amount of 100µg/ml, making them suitable as new anti-infective agents.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Endotoxemia/tratamento farmacológico , Proteínas de Insetos , Leucócitos Mononucleares/metabolismo , Mariposas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Cultivadas , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Feminino , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Leucócitos Mononucleares/patologia , Lipopolissacarídeos/toxicidade , Masculino , Fator de Necrose Tumoral alfa/metabolismo
11.
Biochim Biophys Acta ; 1838(12): 3145-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152299

RESUMO

Diacylglycerol acyltransferase 1 (DGAT1) is a microsomal membrane enzyme responsible for the final step in the synthesis of triacylglycerides. Although DGATs from a wide range of organisms have nearly identical sequences, there is little structural information available for these enzymes. The substrate binding sites of DGAT1 are predicted to be in its large luminal extramembranous loop and to include common motifs with acyl-CoA cholesterol acyltransferase enzymes and the diacylglycerol binding domain found in protein kinases. In this study, synthetic peptides corresponding to the predicted binding sites of DGAT1 enzyme were examined using synchrotron radiation circular dichroism spectroscopy, fluorescence emission and adsorption onto lipid monolayers to determine their interactions with substrates associated with triacylglyceride synthesis (oleoyl-CoA and dioleoylglycerol). One of the peptides, Sit1, which includes the FYxDWWN motif common to both DGAT1 and acyl-CoA cholesterol acyltransferase, changes its conformation in the presence of both substrates, suggesting its capability to bind their acyl chains. The other peptide (Sit2), which includes the putative diacylglycerol binding domain HKWCIRHFYKP found in protein kinase C and diacylglycerol kinases, appears to interact with the charged headgroup region of the substrates. Moreover, in an extended-peptide which contains Sit1 and Sit2 sequences separated by a flexible linker, larger conformational changes were induced by both substrates, suggesting that the two binding sites may bring the substrates into close proximity within the membrane, thus catalyzing the formation of the triacylglyceride product.

12.
Biochim Biophys Acta ; 1838(10): 2728-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25017800

RESUMO

Natural occurring antimicrobial peptides (AMPs) are important components of the innate immune system of animals and plants. They are considered to be promising alternatives to conventional antibiotics. Here we present a comparative study of two synthetic peptides: Gm1, corresponding to the natural overall uncharged peptide from Galleria mellonella (Gm) and ΔGm1, a modified overall positively charged Gm1 variant. We have studied the interaction of the peptides with lipid membranes composed of different kinds of lipopolysaccharides (LPS) and dimyristoylphosphatidylglycerol (DMPG), in some cases also dimyristoylphosphatidylethanolamine (DMPE) as representative lipid components of Gram-negative bacterial membranes, by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). Gm1 generates a destabilizing effect on the gel to liquid crystalline phase transition of the acyl chains of the lipids, as deduced from a decrease in the phase transition temperature and enthalpy, suggesting a fluidization, whereas ΔGm1 led to the opposite behavior. Further, FTIR analysis of the functional groups of the lipids participating in the interaction with the peptides indicated a shift in the band position and intensity of the asymmetric PO2(-) stretching vibration originating from the lipid phosphate groups, a consequence of the sterical changes in the head group region. Interestingly, FRET spectroscopy showed a similar intercalation of both peptides into the DMPG and LPS, but much less into the DMPE membrane systems. These results are discussed in the light of a possible use of the peptides as antimicrobial and anti-endotoxin drugs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bactérias/química , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Proteínas de Insetos/química , Membranas Artificiais , Modelos Químicos , Animais , Anti-Infecciosos/química , Mariposas
13.
Biochim Biophys Acta ; 1838(8): 2087-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796502

RESUMO

The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Neoplasias/patologia , Peptídeos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Varredura Diferencial de Calorimetria , Peptídeos Penetradores de Células , Dicroísmo Circular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lipossomos , Lipídeos de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células Tumorais Cultivadas
14.
J Pept Sci ; 21(4): 274-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683050

RESUMO

A new antimicrobial peptide l-RW containing double amphipathic binding sequences was designed, and its biological activities were investigated in the present study. L-RW showed antibacterial activity against several bacterial strains but low cytotoxicity to mammalian cells and low hemolytic activity to red blood cells, which makes it a potential and promising peptide for further development. Microscale thermophoresis (MST), a new technique, was applied to study the antimicrobial peptide-lipid interaction for the first time, which examined the binding affinities of this new antimicrobial peptide to various lipids, including different phospholipids, mixture lipids and bacterial lipid extracts. The results demonstrated that l-RW bound preferentially to negatively charged lipids over neutral lipids, which was consistent with the biological activities, revealing the important role of electrostatic interaction in the binding process. L-RW also showed higher binding affinity for lipid extract from Staphyloccocus aureus compared with Pseudomonas aeruginosa and Escherichia coli, which were in good agreement with the higher antibacterial activity against S. aureus than P. aeruginosa and E. coli, suggesting that the binding affinity is capable to predict the antibacterial activity to some extent. Additionally, the binding of l-RW to phospholipids was also performed in fetal bovine serum solution by MST, which revealed that the components in biological solution may have interference with the binding event. The results proved that MST is a useful and potent tool in antimicrobial peptide-lipid interaction investigation.


Assuntos
Antibacterianos/química , Lipídeos/química , Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Eritrócitos/ultraestrutura , Humanos , Lipossomos/química , Peptídeos/farmacologia , Peptídeos/toxicidade
15.
Biochim Biophys Acta ; 1828(10): 2306-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23201348

RESUMO

Infrared (IR) spectroscopy has been shown to be very reliable for the characterization, identification and quantification of structural data. Particularly, the Attenuated Total Reflectance (ATR) technique which became one of the best choices to study the structure and organization of membrane proteins and membrane-bound peptides in biologically relevant membranes. An important advantage of IR spectroscopy is its ability to analyze material under a very wide range of conditions including solids, liquids and gases. This method allows elucidation of component secondary structure elements of a peptide or protein in a global manner, and by using site specific isotope labeling allows determination of specific regions. A few advantages in using ATR-FTIR spectroscopy include; a relatively simple technique, allow the determination of peptide orientation in the membrane, allow the determination of secondary structures of very small peptides, and importantly, the method is sensitive to isotopic labeling on the scale of single amino acids. Many studies were reported on the use of ATR-FTIR spectroscopy in order to study the structure and orientation of membrane bound hydrophobic peptides and proteins. The list includes native and de-novo designed peptides, as well as those derived from trans-membrane domains of various receptors (TMDs). The present review will focus on several examples that demonstrate the potential and the simplicity in using the ATR-FTIR approach to determine secondary structures of proteins and peptides when bound, inserted, and oligomerized within membranes. The list includes (i) a channel forming protein/peptide: the Ca(2+) channel phospholamban, (ii) a cell penetrating peptide, (iii) changes in the structure of a transmembrane domain located within ordered and non-ordered domains, and (iv) isotope edited FTIR to directly assign structure to the membrane associated fusion peptide in context of a Key gp41 Structural Motif. Importantly, a unique advantage of infrared spectroscopy is that it allows a simultaneous study of the structure of lipids and proteins in intact biological membranes without an introduction of foreign perturbing probes. Because of the long IR wavelength, light scattering problems are virtually non-existent. This allows the investigation of highly aggregated materials or large membrane fragments. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.


Assuntos
Fusão de Membrana , Proteínas de Membrana/química , Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estrutura Secundária de Proteína
16.
J Colloid Interface Sci ; 653(Pt B): 1402-1414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37801850

RESUMO

Lipid-bilayer nanodiscs provide a stable, native-like membrane environment for the functional and structural studies of membrane proteins and other membrane-binding molecules. Peptide-based nanodiscs having unique properties are developed for membrane protein studies and other biological applications. While the self-assembly process rendering the formation of peptide-nanodiscs is attractive, it is important to understand the stability and suitability of these nanodisc systems for membrane protein studies. In this study, we investigated the nanodiscs formation by the anti-inflammatory and tumor-suppressing peptide AEM28. AEM28 is a chimeric peptide containing a cationic-rich heparan sulfate proteoglycan- (HSPG)-binding domain from human apolipoprotein E (hapoE) (141-150) followed by the 18A peptide's amino acid sequence. AEM28-based nanodiscs made with different types of lipids were characterized using various biophysical techniques and compared with the nanodiscs formed using 2F or 4F peptides. Variable temperature dynamic light-scattering and 31P NMR experiments indicated the fusion and size heterogeneity of nanodiscs at high temperatures. The suitability of AEM28 and Ac-18A-NH2- (2F-) based nanodiscs for studying membrane proteins is demonstrated by reconstituting and characterizing a drug-metabolizing enzyme, cytochrome-P450 (CYP450), or the redox complex CYP450-CYP450 reductase. AEM28 and 2F were also tested for their efficacies in solubilizing E. coli membranes to understand the possibility of using them for detergent-free membrane protein isolation. Our experimental results suggest that AEM28 nanodiscs are suitable for studying membrane proteins with a net positive charge, whereas 2F-based nanodiscs are compatible with any membrane proteins and their complexes irrespective of their charge. Furthermore, both peptides solubilized E. coli cell membranes, indicating their use in membrane protein isolation and other applications related to membrane solubilization.


Assuntos
Proteínas de Membrana , Nanoestruturas , Humanos , Proteínas de Membrana/química , Nanoestruturas/química , Escherichia coli/metabolismo , Peptídeos/química , Bicamadas Lipídicas/química
17.
J Colloid Interface Sci ; 609: 707-717, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34839914

RESUMO

A real-time and molecule-level monitoring of the interfacial dynamic interactions between molecules and a cell membrane is of vital importance. Herein, taking TAT, one of the most representative cell penetrating peptides, as an example, a photo-voltage transient technique and a dynamic giant bistratal vesicle (GBV) leakage method were combined with the traditional giant unilamellar vesicle (GUV) leakage assays, to provide a molecule-level understanding of the dynamic membrane interaction process performed in a low ionic strength and neutral pH condition. The photo-voltage test based on supported phospholipid bilayers showed a quick disturbance (<1 min) followed by a continuous reconstruction of the membrane by peptides, leading to a slight destruction (at TAT concentrations lower than 1 µg mL-1, i.e., 0.64 µM) or strong damage (e.g. at 10 µg mL-1, i.e., 6.4 µM) of the bilayer structure. The GUV/GBV leakage assays further demonstrated the TAT-induced membrane deformation and transmembrane diffusion of dyes, which occurred in an immediate, linear, and TAT-concentration dependent manner. Moreover, the flux of dye across the substrate-immobilized membranes was approximately three times of that across the substrate-free ones. This work gives information on time and molecular mechanism of the TAT-membrane interactions, demonstrates the different permeabilizing effects of TAT on immobilized and free membranes. Overall, it provides useful strategies to investigate the nano-bio interfacial interactions in a simple, global and real-time way.


Assuntos
Peptídeos Penetradores de Células , Membrana Celular , Difusão , Bicamadas Lipídicas , Fosfolipídeos
18.
Biochim Biophys Acta Biomembr ; 1864(12): 184047, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36100074

RESUMO

The exploitation of conventional antibiotics in conjunction with the adeptness of microbes has led to the emergence of multi-drug-resistant pathogens. This has posed a severe threat to combating life-threatening infectious diseases. Antimicrobial peptides (AMP), which are considered to be the first line of defense in all living organisms, are being developed for therapeutic use. Herein, we determined the NMR solution structure of Rhesus macaque Myeloid Alpha Defensin-4 (RMAD4), a defensin AMP. Additionally, the distinct modes of membrane perturbation for two structurally dissimilar classes of AMPs was studied using biophysical methods namely, Solid-state 31P NMR, DSC and cryo-TEM. The cathelicidin - Bovine myeloid antimicrobial peptide (BMAP-28 (1-18)), which adopts a helical conformation, and the defensin RMAD4 peptide that natively folds to form ß-sheets appeared to engage differently with the bacterial membrane. The helical BMAP-28 (1-18) peptide initiates lipid segregation and membrane thinning followed by pore formation, while the ß-stranded RMAD4 peptide demonstrates fragmentation of the bilayer by the carpet or detergent-like mechanism of action. Molecular dynamics studies sufficiently corroborated these findings. The structure and mechanism of action of the AMPs studied using experimental and computational approaches are believed to help in providing a platform for the rational design of new competent and cost-effective antimicrobial peptides for therapeutic applications.


Assuntos
Peptídeos Antimicrobianos , alfa-Defensinas , Animais , Bovinos , alfa-Defensinas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular/química , Detergentes/farmacologia , Lipídeos/análise , Macaca mulatta
19.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552778

RESUMO

With the ability to transport cargo molecules across cell membranes with low toxicity, cell-penetrating peptides (CPPs) have become promising candidates for next generation peptide-based drug delivery vectors. Over the past three decades since the first CPP was discovered, a great deal of work has been done on the cellular uptake mechanisms and the applications for the delivery of therapeutic molecules, and significant advances have been made. But so far, we still do not have a precise and unified understanding of the structure-activity relationship of the CPPs. Molecular dynamics (MD) simulations provide a method to reveal peptide-membrane interactions at the atomistic level and have become an effective complement to experiments. In this paper, we review the progress of the MD simulations on CPP-membrane interactions, including the computational methods and technical improvements in the MD simulations, the research achievements in the CPP internalization mechanism, CPP decoration and coupling, and the peptide-induced membrane reactions during the penetration process, as well as the comparison of simulated and experimental results.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Simulação de Dinâmica Molecular , Transporte Biológico , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos
20.
Biochim Biophys Acta Biomembr ; 1863(1): 183480, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979382

RESUMO

Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas de Artrópodes , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/metabolismo , Aranhas/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/farmacocinética , Proteínas de Artrópodes/farmacologia , Membrana Celular/patologia , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA