RESUMO
The production of sugarcane bioethanol generates large volumes of vinasse, an effluent whose final disposal can produce an environmental impact that is of concern. The long-term disposal of vinasse in sugarcane fields could challenge crop management, such as the performance of traditional herbicides, by changing soil properties. This study aimed to evaluate the effect of long-term vinasse application on the field and the dissipation of atrazine and ametryn herbicides in a subtropical sugarcane agroecosystem, and to discuss the potential processes involved in it. Vinasse affected soil properties by increasing pH (12%), electrical conductivity (160%), and soil organic carbon (25%) at 0-10 cm depth of soil. Differences in the herbicide calculated sorption coefficient (Kd) varied according to the pedotransfer function applied and the herbicide type (atrazine or ametryn). During the first seven days after herbicide application, the soil underwent long-term vinasse application and increased atrazine and ametryn dissipation 45% and 33%, respectively, compared with the conventional fertilization scheme (control). The Pesticide Root Zone Model revealed that dissipation was mediated mainly by the degradation process rather than transport or other processes. The long-term application of vinasse in a typical sugarcane field of Tucumán, Argentina decreased the potential groundwater pollution of triazines and, adversely, reduced their bioavailability for weed control. For this, the present study presents original information about how long-term treatment with vinasse may require an adaptation of conventional management practices such as the application of herbicides in Argentina and other sugarcane-producing regions. Integr Environ Assess Manag 2023;00:1-12. © 2023 SETAC.
RESUMO
Wheat crops and the major wheat-growing regions of the United States are not included in the 6 crop- and region-specific scenarios developed by the US Environmental Protection Agency (USEPA) for exposure modeling with the Pesticide Root Zone Model conceptualized for groundwater (PRZM-GW). The present work augments the current scenarios by defining appropriately vulnerable PRZM-GW scenarios for high-producing spring and winter wheat-growing regions that are appropriate for use in refined pesticide exposure assessments. Initial screening-level modeling was conducted for all wheat areas across the conterminous United States as defined by multiple years of the Cropland Data Layer land-use data set. Soil, weather, groundwater temperature, evaporation depth, and crop growth and management practices were characterized for each wheat area from publicly and nationally available data sets and converted to input parameters for PRZM. Approximately 150 000 unique combinations of weather, soil, and input parameters were simulated with PRZM for an herbicide applied for postemergence weed control in wheat. The resulting postbreakthrough average herbicide concentrations in a theoretical shallow aquifer were ranked to identify states with the largest regions of relatively vulnerable wheat areas. For these states, input parameters resulting in near 90th percentile postbreakthrough average concentrations corresponding to significant wheat areas with shallow depth to groundwater formed the basis for 4 new spring wheat scenarios and 4 new winter wheat scenarios to be used in PRZM-GW simulations. Spring wheat scenarios were identified in North Dakota, Montana, Washington, and Texas. Winter wheat scenarios were identified in Oklahoma, Texas, Kansas, and Colorado. Compared to the USEPA's original 6 scenarios, postbreakthrough average herbicide concentrations in the new scenarios were lower than all but Florida Potato and Georgia Coastal Peanuts of the original scenarios and better represented regions dominated by wheat crops. Integr Environ Assess Manag 2017;13:992-1006. © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).