RESUMO
BACKGROUND: The pharmaceutical industry is continually striving to innovate drug development and formulation processes. Orally disintegrating tablets (ODTs) have gained popularity due to their quick release and patient-friendly characteristics. The choice of excipients in tablet formulations plays a critical role in ensuring product quality, highlighting its importance in tablet creation. The traditional trial-and-error approach to this process is both expensive and time-intensive. To tackle these obstacles, we introduce a fresh approach leveraging machine learning and deep learning methods to automate and enhance pre-formulation drug design. METHODS: We collected a comprehensive dataset of 1983 formulations, including excipient names, quantities, active ingredient details, and various physicochemical attributes. Our study focused on predicting two critical control test parameters: tablet disintegration time and hardness. We compared a range of models like deep learning, artificial neural networks, support vector machines, decision trees, multiple linear regression, and random forests. RESULTS: A 12-layer deep neural network, as a form of deep learning, surpassed alternative techniques by achieving 73% accuracy for disintegration time and 99% for tablet hardness. This success underscores its efficacy in predicting complex pharmaceutical factors. Such an approach streamlines the drug formulation process, reducing iterations and material consumption. CONCLUSIONS: Our findings highlight the deep learning potential in pharmaceutical formulations, particularly for tablet hardness prediction. Future work should focus on enlarging the dataset to improve model effectiveness and extend its application in pharmaceutical product development and assessment.
Assuntos
Inteligência Artificial , Excipientes , Humanos , Solubilidade , Dureza , ComprimidosRESUMO
An innovative methodology is proposed for quantifying Gefitinib (GFT) using an electrochemical sensor constructed from a composite of graphene quantum dots (GQDs) and gold nanoparticles (AuNPs). GQDs were synthesized from graphite, preserving graphene's large surface area and excellent electron transfer capabilities while enhancing dispersibility. The combination of GQDs with AuNPs resulted in an AuNPs@GQDs composite, which was used to construct the sensor. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the electrochemical performance of the sensor was evaluated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a linear calibration curve for GFT detection within the range 0.01 to 10.0 µM, with a limit of detection (LOD) of 0.005 µM (S/N = 3). The sensor demonstrated excellent anti-interference properties and stability in tests using pharmaceutical formulations and plasma samples. Compared to chromatographic methods, the sensor exhibited similar accuracy and recovery. Its easy fabrication and high sensitivity make it a promising tool for pharmaceutical analysis and clinical therapeutic drug monitoring.
Assuntos
Técnicas Eletroquímicas , Gefitinibe , Ouro , Grafite , Limite de Detecção , Nanopartículas Metálicas , Pontos Quânticos , Grafite/química , Pontos Quânticos/química , Ouro/química , Nanopartículas Metálicas/química , Gefitinibe/sangue , Gefitinibe/química , Técnicas Eletroquímicas/métodos , HumanosRESUMO
OBJECTIVES: Allergic rhinitis and chronic idiopathic urticaria are common conditions triggered by environmental irritants, stress, and certain foods. The FDA has recently announced that the efficacy and safety of Ebastine (EBS) have been thoroughly evaluated and confirmed. This study considered using various tools to assess their greenness. We used AGREEprep, analytical eco-scale (ESA), and analytical method volume intensity (AMVI) to evaluate the greenness of the validated stability-indicating method and a forced degradation study. This allowed for easy determination and quantitation of EBS in wastewater and dosage form. METHODS: The method was established on Symmetry RP-C18 (150mm×4.6mm,5µm) using mobile phase, which can be prepared by mixing buffer solution of pH 3 with acetonitrile in a ratio of (37.5: 62.5, v/v) in addition to dissolving 0.72 gm of sodium lauryl sulfate in the final solution. The separation process was executed at a flow rate of 1.5mL/min and 5µL injection volume with UV detection at 254nm. Linearity was conducted for EBS in the 5-50µg/mL range. Different validation parameters were investigated, including accuracy, precision, robustness, and specificity. RESULTS: The limits of both detection and quantification were 0.84µg/mL and 2.57µg/mL for EBS. The recovery percentages of EBS were found to be 101.01% and 101.02% for wastewater and pharmaceutical formulations, respectively. CONCLUSION: According to International Council for Harmonisation (ICH) guidelines, a forced degradation study of EBS was evaluated, including acid, base hydrolysis, and oxidative hydrolysis using hydrogen peroxide and photolytic and thermal degradation. The highest degradation was achieved by acid hydrolysis. The safety and efficacy of EBS were evaluated via a safety comparative profile study.
RESUMO
Pain at the injection site is a common complaint of patients receiving therapeutic formulations containing citric acid. Despite the widely acknowledged role of acid-sensing ion channels (ASICs) in acid-related perception, the specific ASIC subtype mediating pain caused by subcutaneous acid injection and the mechanism by which citrate affects this process are less clear. Here, male mice subjected to intraplantar acid injection responded by executing a withdrawal reflex, and this response was abolished by ASIC1 but not ASIC2 knockout. Although intraplantar injection of neutral citrate solution did not produce this response, intraplantar injection of acidic citrate solution produced a withdrawal reflex greater than that produced by acidity alone. Consistent with the behavioral data, neutral citrate failed to produce an electrophysiological response in HEK293 cells, which express ASIC1, but acidic citrate produced a whole-cell inward current greater than that produced by acidity alone. Saturating the intracellular solution with citrate had no effect on the potentiating effect of extracellular citrate, suggesting that citrate acted extracellularly to potentiate ASIC1. Moreover, exposure to citrate immediately before acid stimulation failed to potentiate ASIC1 currents, which ruled out the involvement of a metabotropic receptor gated by a citrate metabolite. Finally, removal of calcium ions from the extracellular solution mimicked the potentiating effect of citrate and prevented citrate from further potentiating ASIC1. Our data demonstrate that ASIC1 is necessary for the nociceptive response caused by subcutaneous acid infusion and that neutral citrate, despite not inducing ASIC1 currents or nociceptive behavior on its own, potentiates acid nociception by removing the inhibitory effect of extracellular calcium ions on ASIC1.SIGNIFICANCE STATEMENT Citric acid is a common ingredient used in pharmaceutical formulations. Despite the widespread clinical use of these formulations, it remains unclear how citric acid causes pain when injected into patients. We identified ASIC1 as the key receptor used to detect injection-site pain caused by acid, and we showed that neutral citrate does not stimulate ASIC1; instead, citrate substantially potentiates ASIC1 activation when injected simultaneously with acid. In addition, we demonstrated that citrate potentiates ASIC1 by removing the inhibitory action of calcium on the extracellular side of the receptor. Given that injection-site pain is the primary complaint of patients receiving citrate-containing medical products, our data provide mechanistic insight into a common medical complaint and suggest a means of avoiding injection pain.
Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Ácido Cítrico/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Nociceptividade/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Ácido Cítrico/administração & dosagem , Células HEK293 , Humanos , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Preparações Farmacêuticas/químicaRESUMO
Liver-stage Plasmodium in humans is an early stage of malarial infection. Decoquinate (DQ) has a potent multistage antimalarial activity. However, it is practically water insoluble. In this study, the hot-melt extrusion (HME) approach was employed to prepare solid dispersions of DQ to improve oral bioavailability. The DQ dispersions were homogeneous in an aqueous suspension that contained most DQ (>90%) in the aqueous phase. Soluplus, a solubilizer, was found compatible with DQ in forming nanoparticle formulations during the HME process. Another excipient HPMC AS-126 was also proven to be suitable for making DQ nanoparticles through HME. Particle size and antimalarial activity of HME DQ suspensions remained almost unchanged after storage at 4°C for over a year. HME DQ was highly effective at inhibiting Plasmodium infection in vitro at both the liver stage and blood stage. HME DQ at 3 mg/kg by oral administration effectively prevented Plasmodium infection in mice inoculated with Plasmodium berghei sporozoites. Orally administered HME DQ at 2,000 mg/kg to mice showed no obvious adverse effects. HME DQ at 20 mg/kg orally administered to rats displayed characteristic distributions of DQ in the blood with most DQ in the blood cells, revealing the permeability of HME DQ into the cells in relation to its antimalarial activity. The DQ dispersions may be further developed as an oral formulation targeting Plasmodium infection at the liver stage.
Assuntos
Antimaláricos , Decoquinato , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Decoquinato/farmacologia , Composição de Medicamentos , Temperatura Alta , Fígado , Malária/tratamento farmacológico , Camundongos , Plasmodium berghei , Ratos , SolubilidadeRESUMO
Polysorbate 80 (PS80), a nonionic surfactant used in pharmaceutical formulation, is known to be incompatible with m-cresol, an antimicrobial agent for multi-dose injectable formulations. This incompatibility results in increased turbidity caused by micelle aggregation progressing over weeks or longer, where storage temperature, ionic strength, and component concentration influence the aggregation kinetics. Small-angle neutron scattering (SANS) analysis of PS80/m-cresol solutions over a pharmaceutically relevant concentration range of each component reveals the cause of aggregation, the coalescence mechanism, and aggregate structure. PS80 solutions containing m-cresol concentrations below ≈2.0 mg/mL and above ≈4.5 mg/mL are kinetically stable and do not aggregate over a 50 h period. At 5 mg/mL of m-cresol, the mixture forms a kinetically stable microemulsion phase, despite being well below the aqueous solubility limit of m-cresol. Solutions containing intermediate m-cresol concentrations (2.0-4.5 mg/mL) are unstable, resulting in aggregation, coalescence, and eventual phase separation. In unstable solutions, two stages of aggregate growth (nucleation and power-law growth) are observed at m-cresol concentrations at or below ≈3.6 mg/mL. At higher m-cresol concentrations, aggregates experience a third stage of exponential growth. A single kinetic model is developed to explain the stages of aggregate growth observed in both kinetic mechanisms. This work establishes the phase diagram of PS80/m-cresol solution stability and identifies component concentrations necessary for producing stable formulations.
Assuntos
Polissorbatos , Tensoativos , Cresóis , Cinética , Polissorbatos/química , Espalhamento a Baixo Ângulo , Tensoativos/químicaRESUMO
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/metabolismo , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Células L , CamundongosRESUMO
PURPOSE: The performance of new-generation high-power electronic nicotine delivery system (ENDS) for the administration of inhaled terbutaline was assessed. METHODS: The formulation of e-liquid was carried out using terbutaline in combination with 1, 3- propanediol. Several terbutaline concentrations (from 0.3125 to 2.500 mg / mL) and power levels (from 15 to 35 W) were assessed using a box type ENDS. The respirable drug dose was determined using a Glass Twin Impinger and quantified by liquid chromatography coupled with a UV-detector. The Next Generation Impactor and the Dekati Low Pressure Impactor were used to measure the aerosol particle size distribution in drug mass. The results were compared with a jet nebulizer (Cirrus TM 2) similar to the usual clinical conditions (2 mL at [terbutaline] of 2.5 mg / mL). RESULTS: The optimal conditions to maximize terbutaline delivery using ENDS are a drug concentration at 1 mg/mL, and a power level at 30 W, to reach a respirable dose of 8.73 ± 0.90 µg/puff. By contrast, during a 5 min nebulization, the respirable dose of terbutaline was 1040 ± 33 µg whatever the cascade impactors and the aerosol devices used. The mass median aerodynamic diameter (MMAD) remains similar for jet nebulizer and ENDS in the 1.74-2.07 µm range. CONCLUSION: Compared to the jet nebulizer, a same respirable dose of terbutaline at the same range of aerosol size distribution was delivered by ENDS if 120 puffs were performed. The ENDS can be considered as an alternative aerosol device for terbutaline delivery.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Administração por Inalação , Aerossóis/química , Nebulizadores e Vaporizadores , Tamanho da Partícula , TerbutalinaRESUMO
An aminoglycoside antibiotic, amikacin, is used to treat severe and recurring bacterial infections. Due to the absence of a chromophore, however, amikacin must be extensively derivatized before being quantified, both in analytical and bioanalytical samples. In this study, for the first time, we developed a simple and sensitive method for measuring amikacin sulfate using spectrofluorimetry with a 96-well plate reader, based on the design of the experiment's approach. To develop a robust and reproducible spectrofluorimetric method, the influence of essential attributes, namely pH of the buffer, heating temperature, and concentration of reagents, were evaluated using univariate analysis followed by multivariate analysis (central composite design). International Conference of Harmonization guidelines were used to validate the optimized method. The developed technique is linear from 1.9 to 10 µg/ml with a regression coefficient of 0.9991. The detection and quantification limits were 0.649 µg/ml and 1.9 µg/ml, respectively. For the developed method, both intraday and interday precision (%RSD) were less than 5%. Using the method, amikacin concentrations were quantified in prepared amikacin liposomes and commercial formulations of Amicin®. The developed method greatly reduces sample volume and is a rapid, high throughput microplate-based fluorescence approach for the convenient and cost-effective measurement of amikacin in pharmaceutical formulations. In comparison with previously published approaches, the suggested method allowed for quick analysis of a high number of samples in a short amount of time (96 samples in 125 sec), resulting in an average duration of analysis of 1.3 sec per sample.
Assuntos
Amicacina , Antibacterianos , Amicacina/análise , Antibacterianos/análise , Composição de Medicamentos , FluorometriaRESUMO
Vortioxetine (VOR) is a new antidepressant drug used to treat major depressive disorder. In this work, a novel, simple, rapid, accurate, precise, selective, stability-indicating, and fully validated high-performance liquid chromatography method with diode array detection (HPLC-DAD) was developed to determine VOR in bulk and pharmaceutical formulations. A Polar-RP column was used, with a mobile phase consisting of acetonitrile (ACN), methanol (MeOH), acetate buffer pH 3.5, and addition of diethylamine (DEA) in the isocratic elution mode. Assessing the stability of the VOR is fundamental to guarantee the efficacy, safety, and quality of drug products. In this study, the VOR active pharmaceutical ingredient (API) and tablets were subjected to a detailed study of forced degradation, using several degrading agents (acid, alkaline, water, heat, light, and oxidation agents). The developed HPLC-DAD method allows the collection of all the essential data to determine degradation kinetics. It was found that the decomposition of vortioxetine is fragile towards oxidative conditions and photolysis, yielding the first-order and second-order kinetic reaction in the above stress conditions, respectively. The degradation products (DPs) were identified by the high-resolution liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS) method. The HPLC-DAD method was successfully applied for the quantification of VOR in tablets. Additionally, in silico toxicity prediction of the DPs was performed.
Assuntos
Transtorno Depressivo Maior , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Cinética , Espectrometria de Massas em Tandem/métodos , VortioxetinaRESUMO
Engineering pharmaceutical formulations is governed by a number of variables, and the finding of the optimal preparation is intricately linked to the exploration of a multiparametric space through a variety of optimization tasks. As a result, making such optimization activities simpler is a significant undertaking. For the purposes of this study, we suggested a prediction model that was based on least square support vector machine (LSSVM) and whose parameters were optimized using the particle swarm optimization algorithm (PSO-LSSVM model). Other in silico optimization methods were used and compared, including the LSSVM and the back propagation (BP) neural networks algorithm. PSO-LSSVM demonstrated the highest performance on the test dataset, with the lowest mean square error. In addition, two dosage forms, quercetin solid dispersion and apigenin nanoparticles, were selected as model formulations due to the wide range of formulation compositions and manufacturing factors used in their production. Three different models were used to predict the ideal formulations of two different dosage forms, and in real world, the Taguchi orthogonal design arrays were used to optimize the formulations of each dosage form. It is clear that the predicted performance of two formulations using PSO-LSSVM was both consistent with the outcomes of the Taguchi orthogonal planned experiment, demonstrating the model's good reliability and high usefulness. Together, our PSO-LSSVM prediction model has the potential to accurately predict the best possible formulations, reduce the reliance on experimental effort, accelerate the process of formulation design, and provide a low-cost solution to drug preparation optimization.
Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Composição de Medicamentos , Análise dos Mínimos Quadrados , Reprodutibilidade dos TestesRESUMO
Premature ejaculation is a male sexual problem that is marked by rapid ejaculation and quick attainment of orgasm. Dapoxetine belongs to the antidepressant category and modulates its action by preventing the reuptake of serotonin by neurons. Dapoxetine is marketed as an off-label therapy for premature ejaculation. Here, two facile, sensitive, and green compatible approaches were established for dapoxetine assay. The approaches chemically rely on association complex formed between erythrosine-B and dapoxetine in an acidic buffered medium. The quenching effect of the formed complex on the native erythrosine fluorescence at emission 553.5 nm is simply the main idea of spectrofluorimetric assay, while resonance Rayleigh scattering methodology uses augmentation of resonance Rayleigh scattering spectrum at 345 nm by the added dapoxetine. The current approaches exhibit linearity between response and dapoxetine concentration over 0.2-2.5 µg/ml and 0.3-3.0 µg/ml for spectrofluorimetric and resonance Rayleigh scattering (RRS) methods, respectively. All variables affecting methods and complex formation were studied and precisely optimized. The criteria of validation were performed by the directives provided by International Conference on Harmonization's (ICH) Guidelines and limits of detection were 0.06 and 0.05 µg/ml for spectrofluorimetric and RRS techniques, respectively. Finally, the approaches were applied with acceptable results for pharmaceutical formulation analysis.
Assuntos
Benzilaminas , Eritrosina , Composição de Medicamentos , Humanos , Masculino , Naftalenos , Inibidores Seletivos de Recaptação de Serotonina , Espectrometria de FluorescênciaRESUMO
Some medicines are poorly soluble in water. For tube feeding and parenteral administration, liquid formulations are required. The discovery of natural deep eutectic solvents (NADES) opened the way to potential applications for liquid drug formulations. NADES consists of a mixture of two or more simple natural products such as sugars, amino acids, organic acids, choline/betaine, and poly-alcohols in certain molar ratios. A series of NADES with a water content of 0-30% (w/w) was screened for the ability to solubilize (in a stable way) some poorly water-soluble pharmaceuticals at a concentration of 5 mg/mL. The results showed that NADES selectively dissolved the tested drugs. Some mixtures of choline-based NADES, acid-neutral or sugars-based NADES could dissolve chloral hydrate (dissociated in water), ranitidine·HCl (polymorphism), and methylphenidate (water insoluble), at a concentration of up to 250 mg/mL, the highest concentration tested. Whereas a mixture of lactic-acid-propyleneglycol could dissolve spironolacton and trimethoprim at a concentration up to 50 and 100 mg/mL, respectively. The results showed that NADES are promising solvents for formulation of poorly water-soluble medicines for the development of parenteral and tube feeding administration of non-water-soluble medicines. The chemical stability and bioavailability of these drug in NADES needs further studies.
Assuntos
Produtos Biológicos/química , Composição de Medicamentos , Preparações Farmacêuticas/química , Solventes/química , Betaína/química , Colina/química , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Estrutura Molecular , SolubilidadeRESUMO
Origanum vulgare L. is a widely used aromatic plant, especially due to its content in essential oil, mainly rich in carvacrol and thymol. The ethnopharmacological uses of Origanum vulgare L. essential oil (OEO) comprise digestive, respiratory, or dermatological disorders. The review focuses on the increasing number of recent studies investigating several biological activities of OEO. The bioactivities are in tight relation to the phytochemical profile of the essential oil, and also depend on taxonomic, climatic, and geographical characteristics of the plant material. The antibacterial, antifungal, antiparasitic, antioxidant, anti-inflammatory, antitumor, skin disorders beneficial effects, next to antihyperglycemic and anti-Alzheimer activities were reported and confirmed in multiple studies. Moreover, recent studies indicate a positive impact on skin disorders of OEO formulated as nanocarrier systems in order to improve its bioavailability and, thus, enhancing its therapeutic benefits. The review brings an up to date regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil, underlining also the most successful pharmaceutical formulation used for skin disorders.
Assuntos
Óleos Voláteis/farmacologia , Origanum/química , Compostos Fitoquímicos/farmacologia , Dermatopatias/tratamento farmacológico , Animais , HumanosRESUMO
The amount of polysorbate 80 in pharmaceutical formulations affects the product quality and efficacy. A reliable test method is required to quantify the amount of Polysorbate 80 present in the drug product formulations. The test method for the determination of Polysorbate 80 may be used during process development and final product quality assessment. A simple, fast and efficient quantitative method, making use of HPLC-ELSD and a C18 column without sample pretreatment was developed. The developed method demonstrated specificity to polysorbate 80 with high precision as indicated by percent relative standard deviation (%RSD) of 3.0% for six determinations. The accuracy of this method for the determination of polysorbate 80 in a pharmaceutical formulation was demonstrated with an overall recovery of 94.9%.
RESUMO
Oral application of therapeutic enzymes is a promising and non-invasive administration that improves patient compliance. However, the gastrointestinal tract poses several challenges to the oral delivery of proteins, including harsh pH conditions and digestive proteases. A promising way to stabilise enzymes during their gastrointestinal route is by modification with polymers that can provide both steric shielding and selective interaction in different digestive compartments. We give an overview of modification technologies for oral enzymes ranging from functionalisation of native proteins, to site-specific mutation and protein-polymer engineering. We specifically focus on enzymes that are active directly in the gastrointestinal lumen and not systemically absorbed. In addition, we discuss examples of microparticle and nanoparticle encapsulated enzymes for improved oral delivery. The modification of orally administered enzymes offers a broad chemical variability and may be a promising tool for enhancing their gastrointestinal stability.
Assuntos
Sistemas de Liberação de Medicamentos , Enzimas/farmacologia , Trato Gastrointestinal , Nanopartículas , Engenharia de Proteínas , Administração Oral , Estabilidade Enzimática , Humanos , Peptídeo Hidrolases , PolímerosRESUMO
A glassy carbon electrode was modified with carbon black and CdTe quantum dots in a chitosan film to obtained a sensor for norfloxacin (NOR) in the presence of dopamine, caffeine, and uric acid. The morphological, structural and electrochemical characteristics of the nanostructured material were evaluated using spectrophotometry, X-ray diffraction, transmission electronic microscopy and voltammetry. The high electrochemical activity, fast electron transfer rate and high surface area enhanced the oxidation peak currents and shifted the peak potentials of NOR for more negative values (typically at 0.95 V vs. Ag/AgCl). Electrochemical determination of NOR was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV). Response is linear in the 0.2 to 7.4 µmol L-1 NOR concentration range, and the detection limit is as low as 6.6 nmol L-1. The method was successfully applied to the determination of norfloxacin in pharmaceutical formulation, synthetic urine and spiked serum. Graphical abstract Schematic presentation of a voltammetric method using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film for the determination of norfloxacin in serum and urine samples.
Assuntos
Técnicas Eletroquímicas/métodos , Norfloxacino/análise , Pontos Quânticos/química , Compostos de Cádmio , Carbono/química , Quitosana , Eletrodos , Limite de Detecção , Norfloxacino/sangue , Norfloxacino/urina , TelúrioRESUMO
Most medicinal products dispensed to patients have marketing authorization (MA) to ensure high quality of the product, safety, and efficacy. However, in daily practice, to treat patients adequately, there is a medical need for drugs that do not hold MA. To meet this medical need, medicinal products are used in clinical care without MA (unlicensed), such as products prepared by (local) pharmacies: the pharmaceutical preparations. Three types of pharmaceutical preparations are distinguished: (i) reconstitution in excess of summary of product characteristics; (ii) adaptation of a licensed medicinal product (outside its official labeling); (iii) medicinal products from an active pharmaceutical ingredient. Although unlicensed, patients may expect the same quality for these unlicensed pharmaceutical preparations as for the licensed medicinal products. To assure this quality, a proper risk-benefit assessment and proper documentation in (centralized) patient registries and linking to a national pharmacovigilance database should be in place. Based on a risk assessment matrix, requirements for quality assurance can be determined, which has impact on the level of documentation of a pharmaceutical preparation. In this paper, the approach for good documentation including quality assurance and benefit-risk assessment will be discussed and possibilities for patient registries are described to make these crucial preparations available for regular patient care. KEY POINTS Ensuring pharmaceutical quality and performing a proper benefit-risk assessment will guarantee safe use of pharmaceutical preparations. Good documentation of (ultra-)orphan treatments can be collected in centralized patient registries and should be combined with existing information in (inter)national databases and self-reflection of patients. Linking patient registries to a centralized database for adverse drug events is highly recommended as it increases safety control of the (ultra) orphan pharmaceutical preparations.
Assuntos
Composição de Medicamentos/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Preparações Farmacêuticas/normas , Farmácias/organização & administração , Garantia da Qualidade dos Cuidados de Saúde , Sistemas de Notificação de Reações Adversas a Medicamentos/organização & administração , Sistemas de Notificação de Reações Adversas a Medicamentos/normas , Documentação/normas , Humanos , Legislação de Medicamentos , Marketing/legislação & jurisprudência , Produção de Droga sem Interesse Comercial/legislação & jurisprudência , Produção de Droga sem Interesse Comercial/normas , Segurança do Paciente , Farmácias/legislação & jurisprudência , Medição de RiscoRESUMO
In the majority of Latin-American countries, including Argentina, there is a limited availability of vaginal bioproducts containing probiotics in the market. In addition, the conventional treatments of genital tract infections in women represent a high cost to the public health systems. The future development of this type of bioproducts that employ specific lactobacilli strains would not only have a meaningful impact on women's health but would also represent a significant challenge to the pharmaceutical industry. The aims of the work described in this paper were (i) to study different pharmaceutical formulations of vaginal ovules containing Lactobacillus fermentum L23 and L. rhamnosus L60, to determine in which formulation lactobacilli viability was sustained for longer time and (ii) to evaluate if probiotic strains maintained both the antimicrobial activity and biofilm-producing ability after being recovered from the ovules. In this study, we developed and characterized three pharmaceutical formulations containing different glycerol amounts and specific lactobacilli strains. Three relevant parameters, cell viability, antimicrobial activity, and biofilm production, by lactobacilli recovered from the ovules were tested. Although the viability of L23 and L60 strains was mainly influenced by high ovule's glycerol proportion, they survived at 4 °C during the 180 days. Both lactobacilli's antimicrobial activity and biofilm-producing ability were maintained for all treatments. In conclusion, employing a much reduced number of components, we were able to select the most suitable pharmaceutical formulation which maintained not only lactobacilli viability for a long period of time but also their antimicrobial activity and biofilm-producing ability.
Assuntos
Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Composição de Medicamentos/métodos , Lactobacillus/química , Vagina , Anti-Infecciosos/administração & dosagem , Biofilmes/crescimento & desenvolvimento , Feminino , Humanos , Lactobacillus/fisiologia , Preparações Farmacêuticas , Probióticos/administração & dosagem , Probióticos/química , Vagina/efeitos dos fármacosRESUMO
A new, simple, accurate and precise high-performance thin-layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum-backed layer of silica gel 60G F254 using a mixture of toluene-acetonitrile-glacial acetic acid (7.0:2.9:0.1, v/v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (Rf ) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r2 ≥ 0.9997) in the concentration ranges 50-350 and 100-700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid-phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%.