Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes Dev ; 31(6): 590-602, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381411

RESUMO

Developmental gene expression is tightly regulated through enhancer elements, which initiate dynamic spatio-temporal expression, and Polycomb response elements (PREs), which maintain stable gene silencing. These two cis-regulatory functions are thought to operate through distinct dedicated elements. By examining the occupancy of the Drosophila pleiohomeotic repressive complex (PhoRC) during embryogenesis, we revealed extensive co-occupancy at developmental enhancers. Using an established in vivo assay for PRE activity, we demonstrated that a subset of characterized developmental enhancers can function as PREs, silencing transcription in a Polycomb-dependent manner. Conversely, some classic Drosophila PREs can function as developmental enhancers in vivo, activating spatio-temporal expression. This study therefore uncovers elements with dual function: activating transcription in some cells (enhancers) while stably maintaining transcriptional silencing in others (PREs). Given that enhancers initiate spatio-temporal gene expression, reuse of the same elements by the Polycomb group (PcG) system may help fine-tune gene expression and ensure the timely maintenance of cell identities.


Assuntos
Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Grupo Polycomb/metabolismo , Elementos de Resposta , Animais , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Desenvolvimento Embrionário/genética
2.
Genes Dev ; 31(11): 1069-1072, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717045

RESUMO

Development requires the expression of master regulatory genes necessary to specify a cell lineage. Equally significant is the stable and heritable silencing of master regulators that would specify alternative lineages. This regulated gene silencing is carried out by Polycomb group (PcG) proteins, which must be correctly recruited only to the subset of their target loci that requires lineage-specific silencing. A recent study by Erceg and colleagues (pp. 590-602) expands on a key aspect of that targeting: The same DNA elements that recruit PcG complexes to a repressed locus also encode transcriptional enhancers that function in different lineages where that locus must be expressed. Thus, PcG targeting elements overlap with enhancers.


Assuntos
Drosophila melanogaster/genética , Proteínas do Grupo Polycomb/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Complexo Repressor Polycomb 1/genética , Elementos de Resposta
3.
J Biol Chem ; 299(4): 104572, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870680

RESUMO

Post-translational modifications (PTMs) regulate all aspects of protein function. Therefore, upstream regulators of PTMs, such as kinases, acetyltransferases, or methyltransferases, are potential therapeutic targets for human diseases, including cancer. To date, multiple inhibitors and/or agonists of these PTM upstream regulators are in clinical use, while others are still in development. However, these upstream regulators control not only the PTMs of disease-related target proteins but also other disease-irrelevant substrate proteins. Thus, nontargeted perturbing activities may introduce unwanted off-target toxicity issues that limit the use of these drugs in successful clinical applications. Therefore, alternative drugs that solely regulate a specific PTM of the disease-relevant protein target may provide a more precise effect in treating disease with relatively low side effects. To this end, chemically induced proximity has recently emerged as a powerful research tool, and several chemical inducers of proximity (CIPs) have been used to target and regulate protein ubiquitination, phosphorylation, acetylation, and glycosylation. These CIPs have a high potential to be translated into clinical drugs and several examples such as PROTACs and MGDs are now in clinical trials. Hence, more CIPs need to be developed to cover all types of PTMs, such as methylation and palmitoylation, thus providing a full spectrum of tools to regulate protein PTM in basic research and also in clinical application for effective cancer treatment.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Proteínas , Ubiquitinação , Fosforilação , Glicosilação , Acetilação , Neoplasias/tratamento farmacológico
4.
Genes Dev ; 30(9): 1116-27, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151979

RESUMO

Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin.


Assuntos
Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/fisiologia , Modelos Moleculares , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Elementos de Resposta/fisiologia , Animais , Cromatina/metabolismo , Cristalografia , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Complexo Repressor Polycomb 1/isolamento & purificação , Proteínas do Grupo Polycomb/química , Proteínas do Grupo Polycomb/isolamento & purificação , Polimerização , Ligação Proteica , Estrutura Terciária de Proteína
5.
Genes Dev ; 27(21): 2367-79, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186981

RESUMO

Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Modelos Moleculares , Proteínas do Grupo Polycomb/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Dados de Sequência Molecular , Mutação/genética , Proteínas do Grupo Polycomb/química , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fator de Transcrição YY1/química , Fator de Transcrição YY1/metabolismo
6.
Cell Rep ; 22(11): 3032-3043, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539429

RESUMO

Though genetic data suggest that Polycomb group proteins (PcGs) are central chromatin modifiers and repressors that have been implicated in control of embryonic stem cell (ESC) pluripotency, the precise mechanism of PcG complex recruitment remains elusive, especially in mammals. We now report that the first and second MBT repeats of L3mbtl2 are important structural and functional features that are necessary and sufficient for L3mbtl2-mediated recruitment of PRC1.6 complex to target promoters. Interestingly, this region of L3mbtl2 harbors the evolutionarily conserved Pho-binding pocket also present in Drosophila Sfmbt, and mutation of the critical residues within this pocket completely abolishes its interaction with target promoters. Additionally, decreased PRC1.6 chromatin occupancy was observed following loss of individual components (L3mbtl2, Pcgf6, and Max) of the complex. Our findings suggest that the recruitment of noncanonical PRC1.6 complex in ESCs might be the result of L3mbtl2's interaction with multiple components of the complex.


Assuntos
Células-Tronco Embrionárias/metabolismo , Variação Genética/genética , Diferenciação Celular , Humanos
7.
Epigenetics ; 9(11): 1485-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25482055

RESUMO

Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.


Assuntos
Cromatina/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Cromatina/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Evolução Molecular , Humanos , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA