RESUMO
Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.
RESUMO
College and university campuses with a notable arboreal component provide unique opportunities for carrying out ecological research. The University of West Florida Campus Ecosystem Study (UWF CES) was established in 2019 as interconnected research to take advantage of the extensive arborescent nature of the UWF campus, particularly concerning longleaf pine (Pinus palustris). One of these investigations established permanent plots in forested sites of two contrasting types, one dominated by longleaf pine ("pine site") and the other dominated by hardwoods ('hardwood site'). This study used these plots to examine the influence of forest vegetation on light availability and soil processes. Light was measured as photosynthetically active radiation (and expressed as photon flux density-PFD) with a handheld meter in each plot. Soil was sampled to 5 cm in each plot; texture was measured with the hydrometer method. Identical sampling methods were carried out in a persistent canopy opening to assess light and soil conditions under maximum solar radiation. Mean PFD was ~4× higher in pine stands than in hardwood stands; PFD was 12.8 and 3.5% of full light in the pine and hardwood stands, respectively. All soils were dominated by coarse-textured sands, but silt was significantly higher in pine stand soil and higher still in the canopy opening. Among forest stand plots, sand was negatively related to PFD, whereas clay was positively related to PFD. Across the three sites, silt was positively related to PFD. These relationships are consistent with the importance of solar radiation as one of many drivers of soil weathering.
Assuntos
Ecossistema , Pinus , Monitoramento Ambiental , Florida , Florestas , Areia , SoloRESUMO
Single-atom catalysts (SACs), distinguished by their maximum atom efficiency and precise control over the coordination and electronic properties of individual atoms, show great promise in electrocatalysis. Gaining a comprehensive understanding of the electrochemical performance of SACs requires the screening of electron transfer process at micro/nano scale. This research pioneers the use of electrogenerated chemiluminescence microscopy (ECLM) to observe the electrocatalytic reactions at individual SACs. It boasts sensitivity at the single photon level and temporal resolution down to 100â ms, enabling real-time capture of the electrochemical behavior of individual SACs during potential sweeping. Leveraging the direct correlation between ECL emission and heterogeneous electron transfer processes, we introduced photon flux density for quantitative analysis, unveiling the electrocatalytic efficiency of individual SACs. This approach systematically reveals the relationship between SACs based on different metal atoms and their peroxidase (POD)-like activity. The outcomes contribute to a fundamental understanding of SACs and pave the way for designing SACs with diverse technological and industrial applications.
RESUMO
Two pathogenicity groups of Fusarium oxysporum f. sp. spinaciae, the causal agent of Fusarium wilt of spinach (Spinacia oleracea), were described recently based on virulence of isolates on proprietary spinach inbreds. In this study, a wide range in severity of wilt was observed for 68 spinach cultivars inoculated with an isolate of each pathogenicity group, with 22 (32.4%) cultivars displaying differential responses to the isolates. In a second set of trials, seven spinach cultivars were inoculated with five isolates of each pathogenicity group. The cultivars had similar wilt responses to isolates within each group. In both sets of trials, the most severe wilt developed on cultivars inoculated with pathogenicity group 2 isolates when daylength was shorter and light intensity lower. To test whether light intensity exacerbates severity of Fusarium wilt, three spinach cultivars were inoculated with two isolates of each pathogenicity group and grown with or without shading. Shaded plants developed more severe wilt than nonshaded plants. This difference in wilt severity was greatest for plants inoculated with pathogenicity group 2 isolates. We propose naming isolates of pathogenicity groups 1 and 2 as races 1 and 2 of F. oxysporum f. sp. spinaciae, respectively, and recommend the cultivars Kiowa (susceptible to both races) and Magnetic (susceptible to race 2 and highly resistant to race 1) as differentials. Results of this study should help breeders screen spinach germplasm for resistance to both races of F. oxysporum f. sp. spinaciae.
Assuntos
Fusarium , Doenças das Plantas , Spinacia oleracea , VirulênciaRESUMO
We propose a novel approach to measure photosynthetically active radiation (PAR ) in the form of photosynthetic photon flux density with an inexpensive, small multi-channel spectrometer sensor, with integrated optical filters and analog-to-digital converter. Our experiments prove that the combination of eight spectral channels with different optical sensitivities, such as the sensorchip in use (AS7341, ams), derive the PAR with an accuracy of 14/m2/s. Enabled by the sensor architecture, additional information about the light quality can be retrieved which is expressed in the RLQI. A calibration method is proposed, and exemplary measurements are performed. Moreover, the integration in a solar-powered wireless sensor node is outlined, which enables long-term field experiments with high sensor densities and may be used to obtain important indexes, such as the GPP.
RESUMO
In temperate alpine environments, the short growing season, low temperature and a slow nutrient cycle may restrict plant growth more than carbon (C) assimilation does. To test whether C is a limiting resource, we applied a shade gradient from ambient light to 44% (maximum shade) of incident photon flux density (PFD) in late successional, Carex curvula-dominated alpine grassland at 2,580 m elevation in the Swiss central Alps for 3 years (2014-2016). Total aboveground biomass did not significantly decrease under reduced PFD, with a confidence interval ranging from +4% to -15% biomass in maximum shade. Belowground biomass, of which more than 80% were fine roots, was significantly reduced by a mean of 17.9 ± 4.6% (±SE), corresponding to 228 g/m2 , in maximum shade in 2015 and 2016. This suggests reduced investments into water and nutrient acquisition according to the functional equilibrium concept. Specific leaf area (SLA) and maximum leaf length of the most abundant species increased with decreasing PFD. Foliar concentration of nonstructural carbohydrates (NSC) was reduced by 12.5 ± 4.3% under maximum shade (mean of eight tested species), while NSC concentration of belowground storage organs were unchanged in the four most abundant forbs. Furthermore, maximum shade lowered foliar δ13 C by 1.56 ± 0.35 and increased foliar nitrogen concentrations per unit dry mass by 18.8 ± 4.1% across six species in 2015. However, based on unit leaf area, N concentrations were lower in shade (effect of higher SLA). Thus, while we found typical morphological and physiological plant responses to lower light, shading did not considerably affect seasonal aboveground biomass production of this alpine plant community within a broad range of PFD. This suggests that C is not a growth-limiting resource, matching the unresponsiveness to in situ CO2 enrichment previously reported for this type of grassland.
Assuntos
Carbono , Luz Solar , Biomassa , Pradaria , Fenômenos Fisiológicos VegetaisRESUMO
Silvicultural treatments can change the microclimate inside tropical secondary forests and thus enable the artificial regeneration of ecologically and economically important tree species. Increasing levels of canopy tree refinement (diameter at breast height, DBHâ¯>â¯5â¯cm) were applied and combined with understory slashing to investigate how these silvicultural treatments affect the microclimate of a Central Amazon secondary forest. The refinement treatment was performed in six levels of basal area reduction (0, 20, 40, 60, 80, and 100%) in rectangular plots (2318â¯m2) and was equally divided in two subplots that did (understory slashed) or did not (control) receive the application of understory slashing. Canopy openness was estimated using hemispherical photography before treatment implementation and periodically over 26 months. Light transmittance, total daily irradiance, air temperature, air humidity and soil moisture were measured during two climatic seasons (Dry and Wet season) of the two years following the application of the treatments. Understory slashing doubled the canopy openness before the refinement and had an effective and persistent effect on canopy openness, light transmittance and total daily irradiance for the 26 months. Refinement increased canopy openness, light transmittance and total daily irradiance; however, after one year of treatment application, the effect was greater in understory slashed than in control subplots. In plots with higher basal area reduction (>60%), the understory slashed subplots total daily irradiance was 19% and 60% higher than control subplots after nine and 26 months, respectively. Refinement increased air temperature and reduced air humidity and soil moisture. The refinement of canopy trees and understory slashing change the microclimate (particularly light availability) in secondary forests and performed best when applied together. Silvicultural implications for sustainable secondary forest management and productive objectives are discussed.
Assuntos
Florestas , Microclima , Estações do Ano , Solo , ÁrvoresRESUMO
Understanding the photoacclimation response of macroalgae across broad spatial and temporal scales is necessary for predicting their vulnerability to environmental changes and quantifying their contribution to coastal primary production. This study investigated how the photosynthesis-irradiance response and photosynthetic pigment content of the kelp Ecklonia radiata varies both spatially and seasonally among seven sites located across a turbidity gradient in the Hauraki Gulf, north-eastern New Zealand. Photosynthesis-irradiance curves were derived under laboratory conditions for whole adult E. radiata using photorespirometry chambers. Lab-derived photosynthesis-irradiance curves in summer were also compared with in situ measurements made on kelp at each of the seven study sites. Photosynthetic parameters and pigments showed clear seasonal patterns across all sites as demonstrated by higher photosynthetic pigment levels and photosynthetic efficiency occurring in autumn and winter, and higher maximum rates of photosynthesis and respiration occurring in summer. Lamina biomass was similar across sites, yet thalli exhibited a clear photokinetic response to increasing turbidity. At turbid sites photosynthetic pigment levels and photosynthetic efficiency was higher, and respiration and saturation and compensation irradiances lower, compared to high-light sites. The results presented here further our understanding of low-light acclimation strategies in kelp and highlight the degree of seasonality in photosynthetic parameters. Though E. radiata demonstrates a clear capacity to photoacclimate to a degrading light environment, further research is needed to investigate the extent to which the observed acclimation can offset the likely negative effects of increasing turbidity on kelp forest primary production.
Assuntos
Aclimatação/efeitos da radiação , Kelp/fisiologia , Fotossíntese/efeitos da radiação , Kelp/efeitos da radiação , Fótons , Estações do AnoRESUMO
The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.
Assuntos
Luz , Fotossíntese/fisiologia , Alga Marinha/metabolismo , Ecossistema , Phaeophyceae , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Alga Marinha/genética , Alga Marinha/efeitos da radiaçãoRESUMO
Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ∆sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ∆sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ∆sigCDE than in the control strain. These results indicate that ∆sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ∆sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ∆sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ∆sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ∆sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required.
Assuntos
Estresse Oxidativo/efeitos da radiação , Processos Fotoquímicos/efeitos da radiação , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Raios Ultravioleta , Carotenoides/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos da radiação , Modelos Biológicos , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , Processos Fotoquímicos/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Substâncias Protetoras/farmacologia , Superóxidos/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimentoRESUMO
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes.
Assuntos
Helianthus/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Teoria Quântica , Transporte de Elétrons , Elétrons , Raios Infravermelhos , Oxigênio/metabolismo , Fótons , Análise Espectral , Fatores de TempoRESUMO
Mechanical wounding of cell walls occurring in plants under the impact of pathogens or herbivores can be mimicked by cell wall incision with a glass micropipette. Measurements of pH at the surface of Chara corallina internodes following microperforation of cell wall revealed a rapid (10-30s) localized alkalinization of the apoplast after a lag period of 10-20s. The pH increase induced by incision could be as large as 3 pH units and relaxed slowly, with a halftime up to 20min. The axial pH profile around the incision zone was bell-shaped and localized to a small area, extending over a distance of about 100µm. The pH response was suppressed by lowering cell turgor upon the replacement of artificial pond water (APW) with APW containing 50mM sorbitol. Stretching of the plasma membrane during its impression into the cell wall defect is likely to activate the Ca(2+) channels, as evidenced from sensitivity of the incision-induced alkalinization to the external calcium concentration and to the addition of Ca(2+)-channel blockers, such as La(3+), Gd(3+), and Zn(2+). The maximal pH values attained at the incision site (~10.0) were close to pH in light-dependent alkaline zones of Chara cells. The involvement of cytoskeleton in the origin of alkaline patch was documented by observations that the incision-induced pH transients were suppressed by the inhibitors of microtubules (oryzalin and taxol) and, to a lesser extent, by the actin inhibitor (cytochalasin B). The results indicate that the localized increase in apoplastic pH is an early event in mechanoperception and depends on light, cytoskeleton, and intracellular calcium.
Assuntos
Álcalis/química , Parede Celular/química , Chara/química , Concentração de Íons de Hidrogênio , Mecanotransdução Celular , Cálcio/metabolismo , Chara/metabolismo , Clorofila/química , Fluorescência , Transporte de Íons , FotossínteseRESUMO
The cultivation of medical cannabis (Cannabis sativa L.) is expanding in controlled environments, driven by evolving governmental regulations for healthcare supply. Increasing inflorescence weight and plant specialized metabolite (PSM) concentrations is critical, alongside maintaining product consistency. Medical cannabis is grown under different spectra and photosynthetic photon flux densities (PPFD), the interaction between spectrum and PPFD on inflorescence weight and PSM attracts attention by both industrialists and scientists. Plants were grown in climate-controlled rooms without solar light, where four spectra were applied: two low-white spectra (7B-20G-73R/Narrow and 6B-19G-75R/2Peaks), and two high-white (15B-42G-43R/Narrow and 17B-40G-43R/Broad) spectra. The low-white spectra differed in red wavelength peaks (100% 660 nm, versus 50:50% of 640:660 nm), the high-white spectra differed in spectrum broadness. All four spectra were applied at 600 and 1200 µmol m-2 s-1. Irrespective of PPFD, white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased inflorescence weight, compared to white light with a single red peak of 660 nm (7B-20G-73R/Narrow) (tested at P = 0.1); this was associated with higher total plant dry matter production and a more open plant architecture, which likely enhanced light capture. At high PPFD, increasing white fraction and spectrum broadness (17B-40G-43R/Broad) produced similar inflorescence weights compared to white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks). This was caused by an increase of both plant dry matter production and dry matter partitioning to the inflorescences. No spectrum or PPFD effects on cannabinoid concentrations were observed, although at high PPFD white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased terpenoid concentrations compared to the other spectra. At low PPFD, the combination of white light with 640 and 660 nm increased photosynthetic efficiency compared with white light with a single red peak of 660nm, indicating potential benefits in light use efficiency and promoting plant dry matter production. These results indicate that the interaction between spectrum and PPFD influences plant dry matter production. Dividing the light energy in the red waveband over both 640 and 660 nm equally shows potential in enhancing photosynthesis and plant dry matter production.
RESUMO
To examine the sulfate assimilation and reduction process and the regulation of illumination, diatom Phaeodactylum tricornutum and dinoflagellate Amphidinium carterae were selected for continuous simulation incubation under different photon flux densities (PFDs) (54, 108 and 162 µmol photons m-2 s-1), and concentration variations of related sulfur compounds sulfate, dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS) and acrylic acid (AA) in the culture system were observed. The optimal PFD for the growth of two microalgae was 108 µmol photons m-2 s-1. However, the maximum sulfate absorption occurred at 162 µmol photons m-2 s-1 for P. tricornutum and at 54 µmol photons m-2 s-1 for A. carterae. With the increase of PFD, the release of DMSP by P. tricornutum decreased while A. carterae increased. The largest release amount of DMS was 0.59 ± 0.05 fmol cells-1 for P. tricornutum and 2.61 ± 0.89 fmol cells-1 for A. carterae under their optimum growth light condition. The sulfate uptake of P. tricornutum was inhibited by the addition of amino acids, cysteine had a greater inhibitory effect than methionine, and the absorption process was controlled by light. The intermediate products of sulfur metabolism had an up-control effect on the sulfate uptake process of P. tricornutum. However, the addition of amino acids had no obvious effect on the sulfate absorption of A. carterae.
Assuntos
Diatomáceas , Microalgas , Iluminação , Metionina/metabolismo , Metionina/farmacologiaRESUMO
Light is one of the most important factors for photosynthetic organisms to grow. Historically, the amount of light in plant sciences has been referred to as light intensity, irradiance, photosynthetic active radiation, photon flux, photon flux density, etc. On occasion, all these terms are used interchangeably, yet they refer to different physical units and each metric offers distinct information. Even for experts in the fields of plant photobiology, the use of these terms is confusing, and there is a loose implementation of each concept. This makes the use of radiometric units even more confusing to non-experts when looking for ways to measure light, since they could easily feel overwhelmed by the specialized literature. The use of scientific concepts must be accurate, as ambiguity in the use of radiometric quantities can lead to inconsistencies in analysis, thus decreasing the comparability between experiments and to the formulation of incorrect experimental designs. In this review, we provide a simple yet comprehensive view of the use of radiometric quantities in an effort to clarify their meaning and applications. To facilitate understanding, we adopt a minimum amount of mathematical expressions and provide a historical summary of the use of radiometry (with emphasis on plant sciences), examples of uses, and a review of the available instrumentation for radiometric measurements.
RESUMO
The ability of plants to respond to environmental fluctuations is supported by acclimatory adjustments in plant form and function that may require several days and development of a new leaf. We review adjustments in photosynthetic, photoprotective, and foliar vascular capacity in response to variation in light and temperature in terrestrial plants. The requirement for extensive acclimation to these environmental conditions in terrestrial plants is contrasted with an apparent lesser need for acclimation to different light environments, including rapid light fluctuations, in floating aquatic plants for the duckweed Lemna minor. Relevant features of L. minor include unusually high growth rates and photosynthetic capacities coupled with the ability to produce high levels of photoprotective xanthophylls across a wide range of growth light environments without compromising photosynthetic efficiency. These features also allow L. minor to maximize productivity and avoid problems during an abrupt experimental transfer of low-light-grown plants to high light. The contrasting responses of land plants and floating aquatic plants to the light environment further emphasize the need of land plants to, e.g., experience light fluctuations in their growth environment before they induce acclimatory adjustments that allow them to take full advantage of natural settings with such fluctuations.
RESUMO
Plants compete for sunlight and have evolved to perceive shade through both relative increases in the flux of far-red photons (FR; 700 to 750 nm) and decreases in the flux of all photons (intensity). These two signals interact to control stem elongation and leaf expansion. Although the interacting effects on stem elongation are well quantified, responses for leaf expansion are poorly characterized. Here we report a significant interaction between far-red fraction and total photon flux. Extended photosynthetic photon flux density (ePPFD; 400 to 750 nm) was maintained at three levels (50/100, 200 and 500 µmol m-2 s-1), each with a range of 2 to 33% FR. Increasing FR increased leaf expansion in three cultivars of lettuce at the highest ePPFD but decreased expansion at the lowest ePPFD. This interaction was attributed to differences in biomass partitioning between leaves and stems. Increased FR favored stem elongation and biomass partitioning to stems at low ePPFD and favored leaf expansion at high ePPFD. In cucumber, leaf expansion was increased with increasing percent FR under all ePPFD levels showing minimal interaction. The interactions (and lack thereof) have important implications for horticulture and warrant further study for plant ecology.
RESUMO
In a plant factory with artificial light (PFAL), upward lighting is expected to prevent senescence and decrease in the photosynthetic capacity of the lower leaves in the canopy. Upward lighting may also increase the photosynthetic rate of a canopy by improving its photosynthetic photon flux density (PPFD) distribution. However, the net photosynthetic rate (Pn) of leaves is lower when the abaxial surface is irradiated than that when the adaxial surface is irradiated. The aim of this study was to estimate the PPFD in a PFAL and the Pn of plants using three-dimensional plant models and optical simulation. First, we measured the Pn of komatsuna (Brassica rapa L. var. perviridis) leaves under different conditions of the proportion (pad ) of PPFD on the adaxial surface to total PPFD on both surfaces and developed an equation for the light response curve of photosynthesis considering pad . When PPFD was low, except when it was 30 and 70 µmol m-2 s-1, Pn increased as pad increased, because the absorptance also increased with pad . Under high PPFD conditions, Pn was maximized at 67-83% of pad because the light would be distributed more efficiently for photosynthesis. Next, using optical simulation and the developed equation, we estimated the photosynthetic rate of a komatsuna canopy (CPn) under downward and upward lighting. The CPn increased by 1.08-1.13 times by combining downward and upward lighting due to the increase in the photosynthetic photon flux (PPF) of light incident on the canopy and the decrease in the spatial variation of PPFD on the leaves in the canopy. As the depreciation of lamps for upward lighting accounts for 7.5-9.0% of the production cost in a PFAL, even if the depreciation of lamps for upward lighting increased, enhancement of CPn by upward lighting would be cost-effective. We performed optical simulations under 220 conditions and evaluated them using CPn as an index. Moreover, we provided the proportion of PPF of upward lighting that improved CPn and discussed the reason for this improvement. The result shows that optical simulation is useful for evaluating the lighting design in a PFAL and analyzing the effects of the lighting design on the light environment and photosynthesis.
RESUMO
The effects of photosynthetic photon flux density (PPFD) fluctuations in sunlight have already been investigated; however, the spectral photon flux density distribution (SPD) has hardly been considered. Here, sunlight SPD fluctuations recorded for 200 min in October in Tokyo, Japan were artificially reproduced using an LED-artificial sunlight source system. The net photosynthetic rate (P n) of cucumber leaves under reproduced sunlight was measured and compared with the P n estimated from a steady-state PPFD-P n curve for the same leaves. The measured and estimated P n agreed except when the PPFD was low, where the measured P n was lower than the estimated P n. The ratio of measured P n to estimated P n was 0.94-0.95 for PPFD ranges of 300-700 µmol m-2 s-1, while the value was 0.98-0.99 for 900-1,300 µmol m-2 s-1, and the overall ratio was 0.97. This 3% reduction in the measured P n compared with the P n estimated from a steady-state PPFD-P n curve was significantly smaller than the approximately 20-30% reduction reported in previous experimental and simulation studies. This result suggests that the loss of integral net photosynthetic gain under fluctuating sunlight can vary among days with different fluctuation patterns or may be non-significant when fluctuations in both PPFD and relative SPD of sunlight are taken into consideration.
RESUMO
Pfaffia glomerata possesses potential pharmacological and medicinal properties, mainly owing to the secondary metabolite 20-hydroxyecdysone (20E). Increasing production of biomass and 20E is important for industrial purposes. This study aimed to evaluate the influence of irradiance on plant morphology and production of 20E in P. glomerata grown in vitro. Nodal segments of accessions 22 and 43 (Ac22 and Ac43) were inoculated in culture medium containing MS salts and vitamins. Cultures were maintained at 25 ± 2 °C under a 16-h photoperiod and subjected to irradiance treatments of 65, 130, and 200 µmol m-2 s-1 by fluorescent lamps. After 30 days, growth parameters, pigment content, stomatal density, in vitro photosynthesis, metabolites content, and morphoanatomy were assessed. Notably, Ac22 plants exhibited 10-fold higher 20E production when cultivated at 200 µmol m-2 s-1 than at 65 µmol m-2 s-1, evidencing the importance of light quantity for the accumulation of this metabolite. 20E production was twice as high in Ac22 as in Ac43 plants although both accessions responded positively to higher irradiance. Growth under 200 µmol m-2 s-1 stimulated photosynthesis and consequent biomass accumulation, but lowered carotenoids and anthocyanins. Furthermore, increasing irradiance enhanced the number of palisade and spongy parenchyma cells, enhancing the overall growth of P. glomerata. Graphical abstract.