Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(11): 1755-1762, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38162920

RESUMO

The spatial and temporal distribution of sunlight around plants is constantly changing in natural and farmland environments. Previous studies showed that the photosynthesis of crops responds significantly to heterogeneous light conditions in fields. However, the underlying mechanisms remain unclear. In the present study, soybean plants were treated by heterogeneous light after a pre-shading (SH-HL) to simulate the light condition in relay strip intercropping. Gas exchange and nitrogen (N) of leaves were measured to evaluate the photosynthetic performance, as well as photosynthetic N- and water-use efficiency (PNUE and PWUE). Chlorophylls (Chl) and Rubisco were analyzed as representative photosynthetic N components. Results suggest that SH-HL treated soybean exhibited evident photosynthetic compensation as the net photosynthetic rate (Pn) increased significantly in unshaded leaves, from which the export of photosynthates was enhanced. Under SH-HL, leaf N concentration remained relatively stable in unshaded leaves. While Chl concentration decreased but Rubisco concentration increased in unshaded leaves, indicating preferential allocation of leaf N for CO2 fixation. Results also showed that PNUE increased and PWUE decreased in unshaded leaves under SH-HL. Therefore, we suggest that within-leaf N allocation for CO2 fixation in unshaded leaves rather than within-plant N distribution to unshaded leaves drives the photosynthetic compensation under heterogeneous light after a pre-shading. However, enhanced water loss from unshaded leaves is a cost for efficient N-use under these conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01392-8.

2.
Plant Physiol Biochem ; 192: 50-56, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206706

RESUMO

When a plant is exposed to heterogeneous light, the photosynthesis of unshaded leaves is often stimulated to compensate for the decline in photosynthesis of shaded leaves, i.e., photosynthetic compensation. However, a decline of photosynthesis in unshaded leaves, which means an impairment of photosynthetic compensation, has also been widely reported. Herein, two cultivars of maize (Zea mays L.), 'Rongyu1210' (RY) and 'Zhongdan808' (ZD), were studied comparatively. Both cultivars performed evident photosynthetic compensation under heterogeneous light (HL) as the light phase begins (8:30 a.m.). However, as the light phase continues (10:30 a.m.), an impairment of photosynthetic compensation took place in HL-treated ZD, but not in HL-treated RY. For both cultivars, nitrogen content of unshaded leaves was higher under HL, indicating a preferential nitrogen distribution towards unshaded leaves. This is related to the photosynthetic compensation but not the cause of the impairment. In addition, no obvious difference was found in the response of photosynthates (sucrose and starch) to HL between cultivars at 8:30 a.m. However, at 10:30 a.m., the content of photosynthates decreased significantly in unshaded leaves of HL-treated RY, along with increased abundances of both sucrose transporters (SUTs) and H+-ATPase (EC 7.1.2.1). In contrast, it increased along with decreased abundances of SUTs and H+-ATPase in HL-treated ZD. These results suggest that the photosynthetic compensation is impaired when photosynthates export of unshaded leaves is restricted. This suggestion is further confirmed by the results of 13C labeling and dry weight detection on young leaves as 'sink'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA