RESUMO
Microbially induced CaCO3 precipitation (MICP) can give concrete self-healing properties. MICP agents are typically bacterial endospores which are coated into shelled granules, infused into expanded clay, or embedded into superabsorbent polymer (SAP). When small cracks appear in the cured concrete, the encapsulation is broken and the metabolic CO2 production from the germinated bacteria causes healing of the cracks by precipitation of CaCO3. Such systems are being tested empirically at large scales, but survival of endospores through preparation and application, as well as germination and growth kinetics of the germinated vegetative cells, remains poorly resolved. We encapsulated endospores of Bacillus subtilis and Bacillus alkalinitrilicus in crosslinked acrylamide-based SAP and quantified their germination, growth, and, in the case of B. alkalinitrilicus, CaCO3 precipitation potential. The endospores survived crosslinking and desiccation inside the polymer matrix. Microcalorimetry and microscopy showed that ~ 80% of the encapsulated endospores of both strains readily germinated after rehydration of freeze-dried SAP. Germinated cells grew into dense colonies of cells inside the SAP, and those of B. alkalinitrilicus calcified with up to 0.3 g CaCO3 produced per g desiccated SAP when incubated aerobically. Measurements by planar optodes indicated that the precipitation rates were inherently oxygen limited due to diffusional constraints, rather than limited by electron donor or Ca2+ availability. Such oxygen limitation will limit MICP in all water-saturated and oxygen-dependent systems, and MICP agents based on anaerobic bacteria, e.g., nitrate reducers, should be developed to broaden the applicability of bioactive self-healing concretes to wet and waterlogged environments.
Assuntos
Bacillus subtilis/metabolismo , Bacillus/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Polímeros/química , Acrilamida/química , Bacillus/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Bactérias Aeróbias/crescimento & desenvolvimento , Bactérias Aeróbias/metabolismo , Fenômenos Bioquímicos , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Esporos Bacterianos/metabolismo , Água/metabolismoRESUMO
Pteris vittata (PV) and Pteris quadriaurita (PQ) are reported to hyperaccumulate arsenic (As) when grown in Asrich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (AsIII), arsenate (AsV), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O2), we found localized patterns of AsIII/AsV redox transformations in the PV rhizosphere (AsIII/AsV ratio of 0.57) compared to bulk soil (AsIII/AsV ratio of ≤0.04). Our data indicate that the high As root uptake, translocation and accumulation from the As-rich experimental soil (2080 mg kg-1) to PV fronds (6986 mg kg-1) induced As detoxification via AsV reduction and AsIII root efflux, leading to AsIII accumulation and re-oxidation to AsV in the rhizosphere porewater. This As cycling mechanism is linked to the reduction of O2 and MnIII/IV (oxyhydr)oxides resulting in decreased O2 levels and increased Mn solubilization along roots. Compared to PV, we found 4-fold lower As translocation to PQ fronds (1611 mg kg-1), 2-fold lower AsV depletion in the PQ rhizosphere, and no AsIII efflux from PQ roots, suggesting that PQ efficiently controls As uptake to avoid toxic As levels in roots. Analysis of root exudates obtained from soil-grown PV showed that As acquisition by PV roots was not associated with phytic acid release. Our study demonstrates that two closely-related As-accumulating ferns have distinct mechanisms for As uptake modulating As cycling in As-rich environments.
RESUMO
BACKGROUND: Dental plaque biofilms are the causative agents of caries, gingivitis and periodontitis. Both mechanical and chemical strategies are used in routine oral hygiene strategies to reduce plaque build-up. If allowed to mature biofilms can create anoxic microenvironments leading to communities which harbor pathogenic Gram-negative anaerobes. When subjected to high velocity fluid jets and sprays biofilms can be fluidized which disrupts the biofilm structure and allows the more efficient delivery of antimicrobial agents. METHODS: To investigate how such jets may disrupt anoxic niches in the biofilm, we used planar optodes to measure the dissolved oxygen (DO) concentration at the base of in-vitro biofilms grown from human saliva and dental plaque. These biofilms were subject to "shooting" treatments with a commercial high velocity microspray (HVM) device. RESULTS: HVM treatment resulted in removal of much of the biofilm and a concurrent rapid shift from anoxic to oxic conditions at the base of the surrounding biofilm. We also assessed the impact of HVM treatment on the microbial community by tracking 7 target species by qPCR. There was a general reduction in copy numbers of the universal 16S RNA by approximately 95%, and changes of individual species in the target region ranged from approximately 1 to 4 log reductions. CONCLUSION: We concluded that high velocity microsprays removed a sufficient amount of biofilm to disrupt the anoxic region at the biofilm-surface interface.
Assuntos
Placa Dentária , Microbiota , Biofilmes , Humanos , Oxigênio , SalivaRESUMO
Two non-destructive techniques, confocal laser scanning microscopy (CLSM) and planar optode (VisiSens imaging), were combined to relate the fine-scale spatial structure of biofilm components to real-time images of oxygen decay in aquatic biofilms. Both techniques were applied to biofilms grown for seven days at contrasting light and temperature (10/20°C) conditions. The geo-statistical analyses of CLSM images indicated that biofilm structures consisted of small (~100 µm) and middle sized (~101 µm) irregular aggregates. Cyanobacteria and EPS (extracellular polymeric substances) showed larger aggregate sizes in dark grown biofilms while, for algae, aggregates were larger in light-20°C conditions. Light-20°C biofilms were most dense while 10°C biofilms showed a sparser structure and lower respiration rates. There was a positive relationship between the number of pixels occupied and the oxygen decay rate. The combination of optodes and CLMS, taking advantage of geo-statistics, is a promising way to relate biofilm architecture and metabolism at the micrometric scale.
Assuntos
Biofilmes/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Oxigênio/análise , Biofilmes/classificação , Biopolímeros/análise , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Cianobactérias/química , Cianobactérias/crescimento & desenvolvimento , Espaço Extracelular/químicaRESUMO
BACKGROUND AND AIMS: Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism-environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant-soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root-soil interactions. METHODS: pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea. KEY RESULTS: Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root-soil interactions. CONCLUSIONS: This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.
Assuntos
Dióxido de Carbono/metabolismo , Cicer/metabolismo , Fabaceae/metabolismo , Imagem Óptica/métodos , Rizosfera , Triticum/metabolismo , Calibragem , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Dispositivos Ópticos , Imagem Óptica/instrumentação , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Processamento de Sinais Assistido por Computador , SoftwareRESUMO
The mobilization of trace metals in the rhizosphere can be affected by the redox potential, which is closely related to the O2 dynamics. This study examined the distributions of O2 and trace metals in the rhizosphere of the subaquatic hyperaccumulator Leersia hexandra Swartz under chromium (Cr) stress using planar optodes and the diffusive gradients in thin films technique coupled with laser ablation inductively coupled plasma mass spectrometry. The O2 concentrations and oxidized areas in the rhizosphere significantly increased with increases in the light intensity, air humidity, and atmospheric CO2 concentrations (p < 0.05). The O2 concentration first increased with increasing ambient temperatures, then decreased when the temperature increased from 25 to 32 â. The O2 concentration in the rhizosphere was significantly decreased under Cr stress (p < 0.05), with a prolonged response time to the altered ambient temperature. Cr stress led to decreased mobilities of As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sb, V, W, and Zn in the rhizosphere, which were negatively correlated with the concentrations of O2. These results provide new insights into the role of changes in the O2 concentration induced by the roots of hyperaccumulator plants in controlling the mobility of trace metals in soils.
Assuntos
Rizosfera , Oligoelementos , Metais/metabolismo , Cromo/metabolismo , Oligoelementos/metabolismo , Poaceae/metabolismoRESUMO
Recycling of phosphorus (P) from waste streams in agriculture is essential to reduce the negative environmental effects of surplus P and the unsustainable mining of geological P resources. Sewage sludge (SS) is an important P source; however, several issues are associated with the handling and application of SS in agriculture. Thus, post-treatments such as pyrolysis of SS into biochar (BC) could address some of these issues. Here we elucidate how patches of SS in soil interact with the living roots of wheat and affect important P-related rhizosphere processes compared to their BC counterparts. Wheat plants were grown in rhizoboxes with sandy loam soil, and 1 cm Ø patches with either SS or BC placed 10 cm below the seed. A negative control (CK) was included. Planar optode pH sensors were used to visualize spatiotemporal pH changes during 40 days of plant growth, diffusive gradients in thin films (DGT) were applied to map labile P, and zymography was used to visualize the spatial distribution of acid (ACP) and alkaline (ALP) phosphatase activity. In addition, bulk soil measurements of available P, pH, and ACP activity were conducted. Finally, the relative abundance of bacterial P-cycling genes (phoD, phoX, phnK) was determined in the patch area rhizosphere. Labile P was only observed in the area of the SS patches, and SS further triggered root proliferation and increased the activity of ACP and ALP in interaction with the roots. In contrast, BC seemed to be inert, had no visible effect on root growth, and even reduced ACP and ALP activity in the patch area. Furthermore, there was a lower relative abundance of phoD and phnK genes in the BC rhizosphere compared to the CK. Hence, optimization of BC properties is needed to increase the short-term efficiency of BC from SS as a P fertilizer.
Assuntos
Fósforo , Esgotos , Rizosfera , Solo/química , Carvão Vegetal , Triticum , FertilizantesRESUMO
Visualization and quantification of corrosion processes is essential in materials research. Here we present a new approach for 2D spatiotemporal imaging of metal corrosion dynamics in situ. The approach combines time-integrated Mg2+ flux imaging by diffusive gradients in thin films laser ablation inductively coupled plasma mass spectrometry (DGT LA-ICP-MS) and near real-time pH imaging by planar optodes. The parallel assessment of Mg2+ flux and pH distributions on a fine-structured, bare Mg alloy (b-WE43) showed intense Mg dissolution with Mg2+ flux maxima up to 11.9 ng cm-2 s-1 and pH increase >9 during initial corrosion (≤15 min) in aqueous NaNO3 solution (c = 0.01 mol L-1). The techniques visualized the lower initial corrosion rate in buffered synthetic body fluid (Hank's balanced salt solution; pH 7.6) compared to unbuffered NaNO3 (pH 6.0), but precise localization of Mg corrosion remains challenging under these conditions. To further demonstrate the capability of DGT LA-ICP-MS for spatiotemporal metal flux imaging at the microscale, a coated Mg alloy (c-WE43) with lower reactivity was deployed for ≤120 min. The high spatial resolution (â¼10 µm × 80 µm) and low limits of detection (≤0.04 ng cm-2 s-1, t = 60 min) enabled accurate in situ localization and quantification (Urel = 20%, k = 2) of distinct Mg2+ flux increase, showing micro-confined release of Mg2+ from surface coating defects on c-WE43 samples. The presented approach can be extended to other metal species and applied to other materials to better understand corrosion processes and improve material design in technological engineering.
Assuntos
Terapia a Laser , Magnésio , Ligas , Corrosão , DifusãoRESUMO
In flooded soils, an efficient internal aeration system is essential for root growth and plant survival. Roots of many wetland species form barriers to restrict radial O2 loss (ROL) to the rhizosphere. The formation of such barriers greatly enhances longitudinal O2 diffusion from basal parts towards the root tip, and the barrier also impedes the entry of phytotoxic compounds produced in flooded soils into the root. Nevertheless, ROL from roots is an important source of O2 for rhizosphere oxygenation and the oxidation of toxic compounds. In this paper, we review the methodological aspects for the most widely used techniques for the qualitative visualization and quantitative determination of ROL from roots. Detailed methodological approaches, practical set-ups and examples of ROL from roots with or without barriers to ROL are included. This paper provides practical knowledge relevant to several disciplines, including plant-soil interactions, biogeochemistry and eco-physiological aspects of roots and soil biota.
RESUMO
Although real-time monitoring of individual analytes using reversible optical chemical sensors (optodes) is well established, it remains a challenge in optical sensing to monitor multiple analyte concentrations simultaneously. Here, we present a novel sensing approach using hyperspectral imaging in combination with signal deconvolution of overlapping emission spectra of multiple luminescent indicator dyes, which facilitates multi-indicator-based chemical imaging. The deconvolution algorithm uses a linear combination model to describe the superimposed sensor signals and employs a sequential least-squares fit to determine the percent contribution of the individual indicator dyes to the total measured signal. As a proof of concept, we used the algorithm to analyze the measured response of an O2 sensor composed of red-emitting Pd(II)/Pt(II) porphyrins and NIR-emitting Pd(II)/Pt(II) benzoporphyrins with different sensitivities. This facilitated chemical imaging of O2 over a wide dynamic range (0-950 hPa) with a hyperspectral camera system (470-900 nm). The applicability of the novel method was demonstrated by imaging the O2 distribution in the heterogeneous microenvironment around the roots of the aquatic plant Littorella uniflora. The presented approach of combining hyperspectral sensing with signal deconvolution is flexible and can easily be adapted for use of various multi-indicator- or even multianalyte-based optical sensors with different spectral characteristics, enabling high-resolution simultaneous imaging of multiple analytes.
Assuntos
Luminescência , Porfirinas , Diagnóstico por Imagem , Análise dos Mínimos Quadrados , Monitorização FisiológicaRESUMO
Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. lycopersici (Fol), is one of the most destructive soil-borne diseases of tomatoes. Infection takes place on the roots and the process starts with contact between the fungus and the roots hairs. To date, no detailed studies are available on metabolic activity in the early stages of the Fol and tomato root interaction. Spatial and temporal patterns of oxygen consumption could provide new insights into the dynamics of early colonization. Here, we combined planar optodes and spatial analysis to assess how tomato roots influence the metabolic activity and growth patterns of Fol. The results shows that the fungal metabolism, measured as oxygen consumption, increases within a few hours after the inoculation. Statistical analysis revealed that the fungus tends to growth toward the root, whereas, when the root is not present, the single elements of the fungus move with a Brownian motion (random). The combination of planar optodes and spatial analysis is a powerful new tool for assessing temporal and spatial dynamics in the early stages of root-pathogen interaction.
RESUMO
The increasing appreciation of the small-scale (sub-mm) heterogeneity of biogeochemical processes in sediments, wetlands and soils has led to the development of several methods for high-resolution two-dimensional imaging of solute distribution in porewaters. Over the past decades, localised sampling of solutes (diffusive equilibration in thin films, diffusive gradients in thin films) followed by planar luminescent sensors (planar optodes) have been used as analytical tools for studies on solute distribution and dynamics. These approaches have provided new conceptual and quantitative understanding of biogeochemical processes regulating the distribution of key elements and solutes including O2, CO2, pH, redox conditions as well as nutrient and contaminant ion species in structurally complex soils and sediments. Recently these methods have been applied in parallel or integrated as so-called sandwich sensors for multianalyte measurements. Here we review the capabilities and limitations of the chemical imaging methods that are currently at hand, using a number of case studies, and provide an outlook on potential future developments for two-dimensional solute imaging in soils and sediments.
RESUMO
Plant-soil interactions can strongly influence root growth in plants. There is now increasing evidence that root-root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant-plant and plant-soil interactions.